{"title":"机器学习和交易方向分类:公司债券市场的启示","authors":"Mark Fedenia, Tavy Ronen, Seunghan Nam","doi":"10.1007/s11156-024-01252-w","DOIUrl":null,"url":null,"abstract":"<p>Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.</p>","PeriodicalId":47688,"journal":{"name":"Review of Quantitative Finance and Accounting","volume":"21 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning and trade direction classification: insights from the corporate bond market\",\"authors\":\"Mark Fedenia, Tavy Ronen, Seunghan Nam\",\"doi\":\"10.1007/s11156-024-01252-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.</p>\",\"PeriodicalId\":47688,\"journal\":{\"name\":\"Review of Quantitative Finance and Accounting\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Quantitative Finance and Accounting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11156-024-01252-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Quantitative Finance and Accounting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11156-024-01252-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Machine learning and trade direction classification: insights from the corporate bond market
Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.
期刊介绍:
Review of Quantitative Finance and Accounting deals with research involving the interaction of finance with accounting, economics, and quantitative methods, focused on finance and accounting. The papers published present useful theoretical and methodological results with the support of interesting empirical applications. Purely theoretical and methodological research with the potential for important applications is also published. Besides the traditional high-quality theoretical and empirical research in finance, the journal also publishes papers dealing with interdisciplinary topics.