双层沉积物中的流体聚焦形成管道

Fluids Pub Date : 2024-03-06 DOI:10.3390/fluids9030066
A. Gay, Ganesh Tangavelou, Valérie Vidal
{"title":"双层沉积物中的流体聚焦形成管道","authors":"A. Gay, Ganesh Tangavelou, Valérie Vidal","doi":"10.3390/fluids9030066","DOIUrl":null,"url":null,"abstract":"Pipe structures are commonly encountered in the geophysical context, and in particular in sedimentary basins, where they are associated with fluid migration structures. We investigate pipe formation through laboratory experiments by injecting water locally at a constant flow rate at the base of water-saturated sands in a Hele–Shaw cell (30 cm high, 35 cm wide, gap 2.3 mm). The originality of this work is to quantify the effect of a discontinuity. More precisely, bilayered structures are considered, where a layer of fine grains overlaps a layer of coarser grains. Different invasion structures are reported, with fluidization of the bilayered sediment over its whole height or over the finer grains only. The height and area of the region affected by the fluidization display a non-monotonous evolution, which can be interpreted in terms of fluid focusing vs. scattering. Theoretical considerations can predict the critical coarse grains height for the invasion pattern transition, as well as the maximum topography at the sediment free surface in the regime in which only the overlapping finer grains fluidize. These results have crucial geophysical implications, as they demonstrate that invasion patterns and pipe formation dynamics may control the fluid expulsion extent and localization at the seafloor.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"137 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pipe Formation by Fluid Focalization in Bilayered Sediments\",\"authors\":\"A. Gay, Ganesh Tangavelou, Valérie Vidal\",\"doi\":\"10.3390/fluids9030066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pipe structures are commonly encountered in the geophysical context, and in particular in sedimentary basins, where they are associated with fluid migration structures. We investigate pipe formation through laboratory experiments by injecting water locally at a constant flow rate at the base of water-saturated sands in a Hele–Shaw cell (30 cm high, 35 cm wide, gap 2.3 mm). The originality of this work is to quantify the effect of a discontinuity. More precisely, bilayered structures are considered, where a layer of fine grains overlaps a layer of coarser grains. Different invasion structures are reported, with fluidization of the bilayered sediment over its whole height or over the finer grains only. The height and area of the region affected by the fluidization display a non-monotonous evolution, which can be interpreted in terms of fluid focusing vs. scattering. Theoretical considerations can predict the critical coarse grains height for the invasion pattern transition, as well as the maximum topography at the sediment free surface in the regime in which only the overlapping finer grains fluidize. These results have crucial geophysical implications, as they demonstrate that invasion patterns and pipe formation dynamics may control the fluid expulsion extent and localization at the seafloor.\",\"PeriodicalId\":510749,\"journal\":{\"name\":\"Fluids\",\"volume\":\"137 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids9030066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9030066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在地球物理领域,特别是在沉积盆地中,经常会遇到与流体迁移结构有关的管道结构。我们通过实验室实验,在 Hele-Shaw 小室(高 30 厘米,宽 35 厘米,间隙 2.3 毫米)中水饱和砂层底部以恒定流速局部注水,研究管道的形成。这项工作的独创性在于量化不连续性的影响。更确切地说,考虑的是双层结构,即一层细粒重叠一层粗粒。报告了不同的入侵结构,有的双层沉积物在整个高度上发生流化,有的只在较细颗粒上发生流化。受流化影响区域的高度和面积显示出非单调的演变,这可以用流体聚焦与散射来解释。理论上可以预测入侵模式转换的临界粗颗粒高度,以及在只有重叠的较细颗粒流化的情况下沉积物自由表面的最大地形。这些结果具有重要的地球物理意义,因为它们证明了入侵模式和管道形成动力学可能会控制海底的流体排出范围和定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pipe Formation by Fluid Focalization in Bilayered Sediments
Pipe structures are commonly encountered in the geophysical context, and in particular in sedimentary basins, where they are associated with fluid migration structures. We investigate pipe formation through laboratory experiments by injecting water locally at a constant flow rate at the base of water-saturated sands in a Hele–Shaw cell (30 cm high, 35 cm wide, gap 2.3 mm). The originality of this work is to quantify the effect of a discontinuity. More precisely, bilayered structures are considered, where a layer of fine grains overlaps a layer of coarser grains. Different invasion structures are reported, with fluidization of the bilayered sediment over its whole height or over the finer grains only. The height and area of the region affected by the fluidization display a non-monotonous evolution, which can be interpreted in terms of fluid focusing vs. scattering. Theoretical considerations can predict the critical coarse grains height for the invasion pattern transition, as well as the maximum topography at the sediment free surface in the regime in which only the overlapping finer grains fluidize. These results have crucial geophysical implications, as they demonstrate that invasion patterns and pipe formation dynamics may control the fluid expulsion extent and localization at the seafloor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Aerodynamic Shape and Aero-Structural Optimization: Applications from Ahmed Body to NACA 0012 Airfoil and Wind Turbine Blades Flowfield and Noise Dynamics of Supersonic Rectangular Impinging Jets: Major versus Minor Axis Orientations Rim Driven Thruster as Innovative Propulsion Element for Dual Phase Flows in Plug Flow Reactors Investigation of Convective Heat Transfer and Stability on a Rotating Disk: A Novel Experimental Method and Thermal Modeling Visualization and Quantification of Facemask Leakage Flows and Interpersonal Transmission with Varying Face Coverings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1