D. Toh, Kodai Takeda, K. Kayao, Yuji Ohkubo, K. Yamauchi, Y. Sano
{"title":"利用催化剂延迟蚀刻技术高效抛光聚合物表面","authors":"D. Toh, Kodai Takeda, K. Kayao, Yuji Ohkubo, K. Yamauchi, Y. Sano","doi":"10.20965/ijat.2024.p0240","DOIUrl":null,"url":null,"abstract":"Previously, we developed an abrasive-free polishing technique called catalyst-referred etching (CARE) for inorganic materials. In this method, the topmost site of the workpiece surface is preferentially removed via an indirect hydrolysis reaction promoted by a metal catalyst. In this study, we proposed applying the CARE method to polymer material polishing and demonstrated the polishing characteristics. Using the CARE method, polycarbonate, which has an easy cleavage of ester bond via hydrolysis, was polished, resulting in the smoothness of the surface roughness below 1.0 nm. Based on the surface observations, the removal mechanism was estimated as follows. Molecule chains are entangled to form clusters constituting the polymer surface and help determine the surface roughness. In the CARE method, the top of this cluster was selectively removed, thus creating a smooth surface. Polymers with C–C bonds, such as polymethyl methacrylate and fluorinated ethylene propylene, were also smoothed using the CARE method. These results indicate that the CARE method is highly effective in polishing polymer materials.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency Polishing of Polymer Surface Using Catalyst-Referred Etching\",\"authors\":\"D. Toh, Kodai Takeda, K. Kayao, Yuji Ohkubo, K. Yamauchi, Y. Sano\",\"doi\":\"10.20965/ijat.2024.p0240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously, we developed an abrasive-free polishing technique called catalyst-referred etching (CARE) for inorganic materials. In this method, the topmost site of the workpiece surface is preferentially removed via an indirect hydrolysis reaction promoted by a metal catalyst. In this study, we proposed applying the CARE method to polymer material polishing and demonstrated the polishing characteristics. Using the CARE method, polycarbonate, which has an easy cleavage of ester bond via hydrolysis, was polished, resulting in the smoothness of the surface roughness below 1.0 nm. Based on the surface observations, the removal mechanism was estimated as follows. Molecule chains are entangled to form clusters constituting the polymer surface and help determine the surface roughness. In the CARE method, the top of this cluster was selectively removed, thus creating a smooth surface. Polymers with C–C bonds, such as polymethyl methacrylate and fluorinated ethylene propylene, were also smoothed using the CARE method. These results indicate that the CARE method is highly effective in polishing polymer materials.\",\"PeriodicalId\":43716,\"journal\":{\"name\":\"International Journal of Automation Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2024.p0240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
此前,我们针对无机材料开发了一种无磨料抛光技术,称为催化剂参考蚀刻 (CARE)。在这种方法中,通过金属催化剂促进的间接水解反应,优先去除工件表面的最顶端部位。在本研究中,我们提出将 CARE 方法应用于聚合物材料抛光,并展示了抛光特性。利用 CARE 法对易于通过水解作用裂解酯键的聚碳酸酯进行抛光,使其表面粗糙度降至 1.0 nm 以下。根据表面观察结果,估计去除机制如下。分子链缠结成团,构成聚合物表面,有助于确定表面粗糙度。在 CARE 方法中,聚合物簇的顶部被选择性地去除,从而形成光滑的表面。具有 C-C 键的聚合物,如聚甲基丙烯酸甲酯和氟化乙烯丙烯,也可使用 CARE 方法进行平滑处理。这些结果表明,CARE 法在抛光聚合物材料方面非常有效。
High-Efficiency Polishing of Polymer Surface Using Catalyst-Referred Etching
Previously, we developed an abrasive-free polishing technique called catalyst-referred etching (CARE) for inorganic materials. In this method, the topmost site of the workpiece surface is preferentially removed via an indirect hydrolysis reaction promoted by a metal catalyst. In this study, we proposed applying the CARE method to polymer material polishing and demonstrated the polishing characteristics. Using the CARE method, polycarbonate, which has an easy cleavage of ester bond via hydrolysis, was polished, resulting in the smoothness of the surface roughness below 1.0 nm. Based on the surface observations, the removal mechanism was estimated as follows. Molecule chains are entangled to form clusters constituting the polymer surface and help determine the surface roughness. In the CARE method, the top of this cluster was selectively removed, thus creating a smooth surface. Polymers with C–C bonds, such as polymethyl methacrylate and fluorinated ethylene propylene, were also smoothed using the CARE method. These results indicate that the CARE method is highly effective in polishing polymer materials.