使用层层参数化量子电路的线性微分方程量子算法

Junxiang Xiao, Jingwei Wen, Zengrong Zhou, Ling Qian, Zhiguo Huang, Shijie Wei, Guilu Long
{"title":"使用层层参数化量子电路的线性微分方程量子算法","authors":"Junxiang Xiao,&nbsp;Jingwei Wen,&nbsp;Zengrong Zhou,&nbsp;Ling Qian,&nbsp;Zhiguo Huang,&nbsp;Shijie Wei,&nbsp;Guilu Long","doi":"10.1007/s43673-023-00115-1","DOIUrl":null,"url":null,"abstract":"<div><p>Solving linear differential equations is a common problem in almost all fields of science and engineering. Here, we present a variational algorithm with shallow circuits for solving such a problem: given an <span>\\(N \\times N\\)</span> matrix <span>\\({\\varvec{A}}\\)</span>, an <i>N</i>-dimensional vector <span>\\(\\varvec{b}\\)</span>, and an initial vector <span>\\(\\varvec{x}(0)\\)</span>, how to obtain the solution vector <span>\\(\\varvec{x}(T)\\)</span> at time <i>T</i> according to the constraint <span>\\(\\textrm{d}\\varvec{x}(t)/\\textrm{d} t = {\\varvec{A}}\\varvec{x}(t) + \\varvec{b}\\)</span>. The core idea of the algorithm is to encode the equations into a ground state problem of the Hamiltonian, which is solved via hybrid quantum-classical methods with high fidelities. Compared with the previous works, our algorithm requires the least qubit resources and can restore the entire evolutionary process. In particular, we show its application in simulating the evolution of harmonic oscillators and dynamics of non-Hermitian systems with <span>\\(\\mathcal{P}\\mathcal{T}\\)</span>-symmetry. Our algorithm framework provides a key technique for solving so many important problems whose essence is the solution of linear differential equations.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-023-00115-1.pdf","citationCount":"0","resultStr":"{\"title\":\"A quantum algorithm for linear differential equations with layerwise parameterized quantum circuits\",\"authors\":\"Junxiang Xiao,&nbsp;Jingwei Wen,&nbsp;Zengrong Zhou,&nbsp;Ling Qian,&nbsp;Zhiguo Huang,&nbsp;Shijie Wei,&nbsp;Guilu Long\",\"doi\":\"10.1007/s43673-023-00115-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solving linear differential equations is a common problem in almost all fields of science and engineering. Here, we present a variational algorithm with shallow circuits for solving such a problem: given an <span>\\\\(N \\\\times N\\\\)</span> matrix <span>\\\\({\\\\varvec{A}}\\\\)</span>, an <i>N</i>-dimensional vector <span>\\\\(\\\\varvec{b}\\\\)</span>, and an initial vector <span>\\\\(\\\\varvec{x}(0)\\\\)</span>, how to obtain the solution vector <span>\\\\(\\\\varvec{x}(T)\\\\)</span> at time <i>T</i> according to the constraint <span>\\\\(\\\\textrm{d}\\\\varvec{x}(t)/\\\\textrm{d} t = {\\\\varvec{A}}\\\\varvec{x}(t) + \\\\varvec{b}\\\\)</span>. The core idea of the algorithm is to encode the equations into a ground state problem of the Hamiltonian, which is solved via hybrid quantum-classical methods with high fidelities. Compared with the previous works, our algorithm requires the least qubit resources and can restore the entire evolutionary process. In particular, we show its application in simulating the evolution of harmonic oscillators and dynamics of non-Hermitian systems with <span>\\\\(\\\\mathcal{P}\\\\mathcal{T}\\\\)</span>-symmetry. Our algorithm framework provides a key technique for solving so many important problems whose essence is the solution of linear differential equations.</p></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-023-00115-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-023-00115-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-023-00115-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

求解线性微分方程几乎是所有科学和工程领域的常见问题。在此,我们提出了一种带有浅层电路的变分算法来解决此类问题:给定一个 \(N \times N\) 矩阵 \({\varvec{A}}\),一个 N 维向量 \(\varvec{b}\),以及一个初始向量 \(\varvec{x}(0)\)、如何根据约束条件 \(\textrm{d}\varvec{x}(t)/\textrm{d} t = {\varvec{A}}\varvec{x}(t) + \varvec{b}\),在时间 T 得到解向量 \(\varvec{x}(T)\)。该算法的核心思想是将方程编码为哈密顿的基态问题,并通过量子-经典混合方法以高保真度求解。与前人的研究相比,我们的算法所需量子比特资源最少,而且可以还原整个演化过程。特别是,我们展示了它在模拟谐振子演化和具有(\mathcal{P}\mathcal{T}\)对称性的非赫米提系统动力学中的应用。我们的算法框架为解决许多本质上是线性微分方程求解的重要问题提供了关键技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A quantum algorithm for linear differential equations with layerwise parameterized quantum circuits

Solving linear differential equations is a common problem in almost all fields of science and engineering. Here, we present a variational algorithm with shallow circuits for solving such a problem: given an \(N \times N\) matrix \({\varvec{A}}\), an N-dimensional vector \(\varvec{b}\), and an initial vector \(\varvec{x}(0)\), how to obtain the solution vector \(\varvec{x}(T)\) at time T according to the constraint \(\textrm{d}\varvec{x}(t)/\textrm{d} t = {\varvec{A}}\varvec{x}(t) + \varvec{b}\). The core idea of the algorithm is to encode the equations into a ground state problem of the Hamiltonian, which is solved via hybrid quantum-classical methods with high fidelities. Compared with the previous works, our algorithm requires the least qubit resources and can restore the entire evolutionary process. In particular, we show its application in simulating the evolution of harmonic oscillators and dynamics of non-Hermitian systems with \(\mathcal{P}\mathcal{T}\)-symmetry. Our algorithm framework provides a key technique for solving so many important problems whose essence is the solution of linear differential equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Correction: Intersections of ultracold atomic polarons and nuclear clusters: how is a chart of nuclides modified in dilute neutron matter? News and Views (11 & 12) Nuclear level lifetime measurements across varied ranges using the digital INGA at TIFR Neutron emission spectrometer in magnetic confinement fusion Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1