Giovanny Alvarado-Gutierrez, Somaye Sadeghian, Yang Dong
{"title":"悉尼地区挖掘引起的横向位移简化评估","authors":"Giovanny Alvarado-Gutierrez, Somaye Sadeghian, Yang Dong","doi":"10.56295/agj5913","DOIUrl":null,"url":null,"abstract":"Excavations change the stress state of the in-situ ground. The altered stress state causes lateral and vertical displacement in the buildings and structures adjacent to the excavation. In areas like the Sydney region, tectonic locked-in horizontal stresses at shallow depth exceed the vertical stress and the high in-situ horizontal stresses cause possibility of excavation-induced displacement in good quality rocks (e.g., Hawkesbury Sandstone Class I, II, and III). This paper estimates the magnitude and shape of the excavation-induced displacement trough along the excavation edge in Hawkesbury Sandstone. A parametric study was undertaken using three-dimensional finite element analysis to estimate the maximum lateral excavation-induced displacement as well as the lateral displacement trough as a function of the ground type, excavation depth and width, and principal in-situ stress orientation. The results were verified by comparing with monitoring results published for Sydney Sandstone.","PeriodicalId":43619,"journal":{"name":"Australian Geomechanics Journal","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified excavation-induced lateral displacement assessment in Sydney area\",\"authors\":\"Giovanny Alvarado-Gutierrez, Somaye Sadeghian, Yang Dong\",\"doi\":\"10.56295/agj5913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excavations change the stress state of the in-situ ground. The altered stress state causes lateral and vertical displacement in the buildings and structures adjacent to the excavation. In areas like the Sydney region, tectonic locked-in horizontal stresses at shallow depth exceed the vertical stress and the high in-situ horizontal stresses cause possibility of excavation-induced displacement in good quality rocks (e.g., Hawkesbury Sandstone Class I, II, and III). This paper estimates the magnitude and shape of the excavation-induced displacement trough along the excavation edge in Hawkesbury Sandstone. A parametric study was undertaken using three-dimensional finite element analysis to estimate the maximum lateral excavation-induced displacement as well as the lateral displacement trough as a function of the ground type, excavation depth and width, and principal in-situ stress orientation. The results were verified by comparing with monitoring results published for Sydney Sandstone.\",\"PeriodicalId\":43619,\"journal\":{\"name\":\"Australian Geomechanics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Geomechanics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56295/agj5913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Geomechanics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56295/agj5913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
摘要
挖掘工程会改变原地地面的应力状态。应力状态的改变会导致挖掘区附近的建筑物和结构发生横向和纵向位移。在悉尼地区等地区,浅层的构造锁定水平应力超过了垂直应力,高原位水平应力导致优质岩石(如霍克斯伯里砂岩 I 级、II 级和 III 级)可能出现挖掘引起的位移。本文估算了霍克斯伯里砂岩开挖边缘开挖诱发位移槽的大小和形状。利用三维有限元分析进行了参数研究,以估算挖掘引起的最大横向位移,以及横向位移槽与地层类型、挖掘深度和宽度以及原位主应力方向的函数关系。研究结果与悉尼砂岩的监测结果进行了对比验证。
Simplified excavation-induced lateral displacement assessment in Sydney area
Excavations change the stress state of the in-situ ground. The altered stress state causes lateral and vertical displacement in the buildings and structures adjacent to the excavation. In areas like the Sydney region, tectonic locked-in horizontal stresses at shallow depth exceed the vertical stress and the high in-situ horizontal stresses cause possibility of excavation-induced displacement in good quality rocks (e.g., Hawkesbury Sandstone Class I, II, and III). This paper estimates the magnitude and shape of the excavation-induced displacement trough along the excavation edge in Hawkesbury Sandstone. A parametric study was undertaken using three-dimensional finite element analysis to estimate the maximum lateral excavation-induced displacement as well as the lateral displacement trough as a function of the ground type, excavation depth and width, and principal in-situ stress orientation. The results were verified by comparing with monitoring results published for Sydney Sandstone.