S. Padmanabhan, C. Joel, S. Mahalingam, J. R. Deepak, T. V. Kumar, Deborah Raj
{"title":"电动汽车电池的循环经济需求概述","authors":"S. Padmanabhan, C. Joel, S. Mahalingam, J. R. Deepak, T. V. Kumar, Deborah Raj","doi":"10.46488/nept.2024.v23i01.014","DOIUrl":null,"url":null,"abstract":"Batteries are a widely utilized and simple method for powering electronic devices, particularly given the prevalence of individuals traveling to all gadgets. The escalating adoption of electric vehicles and portable electronic devices has led to a surge in the demand for lithium-ion batteries. Consequently, this has given rise to supply uncertainties in acquiring essential minerals such as lithium and cobalt, along with concerns about the proper disposal of dead batteries. The existing methods for battery recycling exhibit variations based on the individual chemistries of the batteries, hence influencing both cost factors and greenhouse gas emissions. Simultaneously, there exists a possibility for repurposing depleted batteries for low-tier energy storage applications. The absence of legislation pertaining to the secure storage and handling of waste streams contributes to the accumulation of refuse in exposed environments and the release of hazardous substances from landfills. In addition, contemporary battery manufacturing methods necessitate the utilization of innovative substances, such as ionic liquids for electrolytes and nanostructures for cathodes, to enhance the energy characteristics and longevity of batteries. The presence of uncertainties regarding the accurate assessment of the environmental consequences associated with novel battery chemicals has the potential to impede efforts aimed at recycling and containment. The objective of this analysis is to consolidate the existing knowledge regarding battery pollutants, both those that are recognized and those that remain uncertain, and to assess their potential environmental impacts. Additionally, this research aims to examine the current strategies and methods employed for the recycling of batteries in the circular economy.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"05 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview of the Need for Circular Economy on Electric Vehicle Batteries\",\"authors\":\"S. Padmanabhan, C. Joel, S. Mahalingam, J. R. Deepak, T. V. Kumar, Deborah Raj\",\"doi\":\"10.46488/nept.2024.v23i01.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Batteries are a widely utilized and simple method for powering electronic devices, particularly given the prevalence of individuals traveling to all gadgets. The escalating adoption of electric vehicles and portable electronic devices has led to a surge in the demand for lithium-ion batteries. Consequently, this has given rise to supply uncertainties in acquiring essential minerals such as lithium and cobalt, along with concerns about the proper disposal of dead batteries. The existing methods for battery recycling exhibit variations based on the individual chemistries of the batteries, hence influencing both cost factors and greenhouse gas emissions. Simultaneously, there exists a possibility for repurposing depleted batteries for low-tier energy storage applications. The absence of legislation pertaining to the secure storage and handling of waste streams contributes to the accumulation of refuse in exposed environments and the release of hazardous substances from landfills. In addition, contemporary battery manufacturing methods necessitate the utilization of innovative substances, such as ionic liquids for electrolytes and nanostructures for cathodes, to enhance the energy characteristics and longevity of batteries. The presence of uncertainties regarding the accurate assessment of the environmental consequences associated with novel battery chemicals has the potential to impede efforts aimed at recycling and containment. The objective of this analysis is to consolidate the existing knowledge regarding battery pollutants, both those that are recognized and those that remain uncertain, and to assess their potential environmental impacts. Additionally, this research aims to examine the current strategies and methods employed for the recycling of batteries in the circular economy.\",\"PeriodicalId\":18783,\"journal\":{\"name\":\"Nature Environment and Pollution Technology\",\"volume\":\"05 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Environment and Pollution Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46488/nept.2024.v23i01.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Environment and Pollution Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46488/nept.2024.v23i01.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
An Overview of the Need for Circular Economy on Electric Vehicle Batteries
Batteries are a widely utilized and simple method for powering electronic devices, particularly given the prevalence of individuals traveling to all gadgets. The escalating adoption of electric vehicles and portable electronic devices has led to a surge in the demand for lithium-ion batteries. Consequently, this has given rise to supply uncertainties in acquiring essential minerals such as lithium and cobalt, along with concerns about the proper disposal of dead batteries. The existing methods for battery recycling exhibit variations based on the individual chemistries of the batteries, hence influencing both cost factors and greenhouse gas emissions. Simultaneously, there exists a possibility for repurposing depleted batteries for low-tier energy storage applications. The absence of legislation pertaining to the secure storage and handling of waste streams contributes to the accumulation of refuse in exposed environments and the release of hazardous substances from landfills. In addition, contemporary battery manufacturing methods necessitate the utilization of innovative substances, such as ionic liquids for electrolytes and nanostructures for cathodes, to enhance the energy characteristics and longevity of batteries. The presence of uncertainties regarding the accurate assessment of the environmental consequences associated with novel battery chemicals has the potential to impede efforts aimed at recycling and containment. The objective of this analysis is to consolidate the existing knowledge regarding battery pollutants, both those that are recognized and those that remain uncertain, and to assess their potential environmental impacts. Additionally, this research aims to examine the current strategies and methods employed for the recycling of batteries in the circular economy.
期刊介绍:
The journal was established initially by the name of Journal of Environment and Pollution in 1994, whose name was later changed to Nature Environment and Pollution Technology in the year 2002. It has now become an open access online journal from the year 2017 with ISSN: 2395-3454 (Online). The journal was established especially to promote the cause for environment and to cater the need for rapid dissemination of the vast scientific and technological data generated in this field. It is a part of many reputed international indexing and abstracting agencies. The Journal has evoked a highly encouraging response among the researchers, scientists and technocrats. It has a reputed International Editorial Board and publishes peer reviewed papers. The Journal has also been approved by UGC (India). The journal publishes both original research and review papers. The ideology and scope of the Journal includes the following. -Monitoring, control and management of air, water, soil and noise pollution -Solid waste management -Industrial hygiene and occupational health -Biomedical aspects of pollution -Toxicological studies -Radioactive pollution and radiation effects -Wastewater treatment and recycling etc. -Environmental modelling -Biodiversity and conservation -Dynamics and behaviour of chemicals in environment -Natural resources, wildlife, forests and wetlands etc. -Environmental laws and legal aspects -Environmental economics -Any other topic related to environment