酸性介质中不锈钢的环保型芒果叶提取物缓蚀剂

Dharampal Bajaj, Pratiksha D. Khurpade
{"title":"酸性介质中不锈钢的环保型芒果叶提取物缓蚀剂","authors":"Dharampal Bajaj, Pratiksha D. Khurpade","doi":"10.46488/nept.2024.v23i01.010","DOIUrl":null,"url":null,"abstract":"Corrosion of metals and alloys is one of the most frequent problems encountered in chemical and process industries. Inefficient corrosion control measures typically lead to an increased risk of unplanned downtime, huge economic loss, environmental damage, and health and safety hazards. Hence, it is essential to develop environment-friendly and cost-effective corrosion inhibitors over existing toxic anticorrosive agents. The main objective of this work is to examine the efficacy of eco-friendly ethanolic extract of Mangifera indica leaves (MIL) in different concentrations as a green corrosion inhibitor for stainless steel (SS-316L) under an acidic environment. The inhibition efficiency of Mangifera indica leaves extract in 1 M hydrochloric acid (HCl) was evaluated by conventional weight loss method along with adsorption isotherm analysis. Chemical compounds present in leaf extract and changes in surface morphology of SS-316L samples were assessed using Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FE-SEM) provided with elemental analysis. The results of the weight loss method revealed that the inhibition efficiency increases with increasing MIL extract concentration due to higher surface coverage. The highest inhibition efficiency of almost 63.43% in 14 days and minimum corrosion rate of 0.433 mm per year was obtained for SS-316 L in 1.0 M HCl with 1000 ppm concentration. The adsorption of MIL extract on SS-316L surface followed Freundlich adsorption isotherm, and the obtained value of free Energy of adsorption (ΔG˚ads = – 9.20 kJ.mol-1) indicates the physical adsorption mechanism. The developed regression-based models can predict the corrosion rate as a function of inhibitor concentration and exposure time with good accuracy (>80%). Thus, the present findings demonstrate that Mangifera indica L. leaves extract can suitably be applied as an inexpensive, non-toxic, biodegradable, efficient green corrosion inhibitor for the protection of stainless steel in acidic media.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"84 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Eco-friendly Mangifera indica Leaves Extract Corrosion Inhibitor for Stainless Steel in Acidic Medium\",\"authors\":\"Dharampal Bajaj, Pratiksha D. Khurpade\",\"doi\":\"10.46488/nept.2024.v23i01.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corrosion of metals and alloys is one of the most frequent problems encountered in chemical and process industries. Inefficient corrosion control measures typically lead to an increased risk of unplanned downtime, huge economic loss, environmental damage, and health and safety hazards. Hence, it is essential to develop environment-friendly and cost-effective corrosion inhibitors over existing toxic anticorrosive agents. The main objective of this work is to examine the efficacy of eco-friendly ethanolic extract of Mangifera indica leaves (MIL) in different concentrations as a green corrosion inhibitor for stainless steel (SS-316L) under an acidic environment. The inhibition efficiency of Mangifera indica leaves extract in 1 M hydrochloric acid (HCl) was evaluated by conventional weight loss method along with adsorption isotherm analysis. Chemical compounds present in leaf extract and changes in surface morphology of SS-316L samples were assessed using Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FE-SEM) provided with elemental analysis. The results of the weight loss method revealed that the inhibition efficiency increases with increasing MIL extract concentration due to higher surface coverage. The highest inhibition efficiency of almost 63.43% in 14 days and minimum corrosion rate of 0.433 mm per year was obtained for SS-316 L in 1.0 M HCl with 1000 ppm concentration. The adsorption of MIL extract on SS-316L surface followed Freundlich adsorption isotherm, and the obtained value of free Energy of adsorption (ΔG˚ads = – 9.20 kJ.mol-1) indicates the physical adsorption mechanism. The developed regression-based models can predict the corrosion rate as a function of inhibitor concentration and exposure time with good accuracy (>80%). Thus, the present findings demonstrate that Mangifera indica L. leaves extract can suitably be applied as an inexpensive, non-toxic, biodegradable, efficient green corrosion inhibitor for the protection of stainless steel in acidic media.\",\"PeriodicalId\":18783,\"journal\":{\"name\":\"Nature Environment and Pollution Technology\",\"volume\":\"84 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Environment and Pollution Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46488/nept.2024.v23i01.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Environment and Pollution Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46488/nept.2024.v23i01.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

金属和合金的腐蚀是化工和加工行业最常见的问题之一。低效的腐蚀控制措施通常会增加意外停机的风险、造成巨大的经济损失、破坏环境以及危害健康和安全。因此,在现有的有毒防腐剂之外,开发环境友好型和具有成本效益的缓蚀剂至关重要。这项工作的主要目的是研究不同浓度的莽草叶(Mangifera indica leaves,MIL)乙醇提取物作为酸性环境下不锈钢(SS-316L)绿色缓蚀剂的功效。通过传统的失重法和吸附等温线分析,评估了芒果叶提取物在 1 M 盐酸(HCl)中的抑制效率。使用傅立叶变换红外光谱(FTIR)和场发射扫描电子显微镜(FE-SEM)以及元素分析评估了叶提取物中存在的化学物质以及 SS-316L 样品表面形态的变化。失重法的结果表明,随着 MIL 提取物浓度的增加,抑制效率也会增加,这是因为表面覆盖率提高了。在浓度为 1000 ppm 的 1.0 M HCl 溶液中,SS-316 L 在 14 天内的抑制效率最高,接近 63.43%,腐蚀速率最低,为每年 0.433 mm。MIL 提取物在 SS-316L 表面的吸附遵循 Freundlich 吸附等温线,所获得的吸附自由能值(ΔG˚ads = - 9.20 kJ.mol-1)表明这是一种物理吸附机制。所开发的基于回归的模型可以预测腐蚀速率与抑制剂浓度和暴露时间的函数关系,准确度较高(大于 80%)。因此,本研究结果表明,芒果叶提取物可作为一种廉价、无毒、可生物降解的高效绿色缓蚀剂,用于保护酸性介质中的不锈钢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Eco-friendly Mangifera indica Leaves Extract Corrosion Inhibitor for Stainless Steel in Acidic Medium
Corrosion of metals and alloys is one of the most frequent problems encountered in chemical and process industries. Inefficient corrosion control measures typically lead to an increased risk of unplanned downtime, huge economic loss, environmental damage, and health and safety hazards. Hence, it is essential to develop environment-friendly and cost-effective corrosion inhibitors over existing toxic anticorrosive agents. The main objective of this work is to examine the efficacy of eco-friendly ethanolic extract of Mangifera indica leaves (MIL) in different concentrations as a green corrosion inhibitor for stainless steel (SS-316L) under an acidic environment. The inhibition efficiency of Mangifera indica leaves extract in 1 M hydrochloric acid (HCl) was evaluated by conventional weight loss method along with adsorption isotherm analysis. Chemical compounds present in leaf extract and changes in surface morphology of SS-316L samples were assessed using Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FE-SEM) provided with elemental analysis. The results of the weight loss method revealed that the inhibition efficiency increases with increasing MIL extract concentration due to higher surface coverage. The highest inhibition efficiency of almost 63.43% in 14 days and minimum corrosion rate of 0.433 mm per year was obtained for SS-316 L in 1.0 M HCl with 1000 ppm concentration. The adsorption of MIL extract on SS-316L surface followed Freundlich adsorption isotherm, and the obtained value of free Energy of adsorption (ΔG˚ads = – 9.20 kJ.mol-1) indicates the physical adsorption mechanism. The developed regression-based models can predict the corrosion rate as a function of inhibitor concentration and exposure time with good accuracy (>80%). Thus, the present findings demonstrate that Mangifera indica L. leaves extract can suitably be applied as an inexpensive, non-toxic, biodegradable, efficient green corrosion inhibitor for the protection of stainless steel in acidic media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Environment and Pollution Technology
Nature Environment and Pollution Technology Environmental Science-Environmental Science (all)
CiteScore
1.20
自引率
0.00%
发文量
159
审稿时长
36 weeks
期刊介绍: The journal was established initially by the name of Journal of Environment and Pollution in 1994, whose name was later changed to Nature Environment and Pollution Technology in the year 2002. It has now become an open access online journal from the year 2017 with ISSN: 2395-3454 (Online). The journal was established especially to promote the cause for environment and to cater the need for rapid dissemination of the vast scientific and technological data generated in this field. It is a part of many reputed international indexing and abstracting agencies. The Journal has evoked a highly encouraging response among the researchers, scientists and technocrats. It has a reputed International Editorial Board and publishes peer reviewed papers. The Journal has also been approved by UGC (India). The journal publishes both original research and review papers. The ideology and scope of the Journal includes the following. -Monitoring, control and management of air, water, soil and noise pollution -Solid waste management -Industrial hygiene and occupational health -Biomedical aspects of pollution -Toxicological studies -Radioactive pollution and radiation effects -Wastewater treatment and recycling etc. -Environmental modelling -Biodiversity and conservation -Dynamics and behaviour of chemicals in environment -Natural resources, wildlife, forests and wetlands etc. -Environmental laws and legal aspects -Environmental economics -Any other topic related to environment
期刊最新文献
Optimization of Aviation Biofuel Development as Sustainable Energy Through Simulation of System Dynamics Modeling Evaluation of Grid-Based Aridity Indices in Classifying Aridity Zones in Iraq Elucidating Mycotoxin-Producing Aspergillus Species in River Water: An Advanced Molecular Diagnostic Study for the Assessment of Ecological Health and Contamination Risk Heavy Metal Concentration in Fish Species Clarias gariepinus (Catfish) and Oreochromis niloticus (Nile Tilapia) from Anambra River, Nigeria Impact of Hydraulic Developments on the Quality of Surface Water in the Mafragh Watershed, El Tarf, Algeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1