Teshager Argaw Endale, Gelana Amente Raba, K. T. Beketie, G. Feyisa
{"title":"利用多光谱卫星数据探索 2009-2020 年埃塞俄比亚迪雷达瓦上空的气溶胶光学深度变化趋势及其对城市空气质量的影响","authors":"Teshager Argaw Endale, Gelana Amente Raba, K. T. Beketie, G. Feyisa","doi":"10.46488/nept.2024.v23i01.001","DOIUrl":null,"url":null,"abstract":"This study focuses on atmospheric aerosols, especially aerosol optical depth (AOD), over Dire Dawa, Ethiopia, from 2009 to 2020. At first, a correlation between the four satellite sensors and AERONET was made for validation purposes and to determine the sensor that best represents Dire Dawa. Intercomparisons were also made among the four satellite sensors. After all statistical tests, annual, seasonal, and decadal trend analyses were made. The validation results indicated that the AOD of MODIS-terra showed the best correlation with AERONET with R2 (0.78), RMSE (0.03), and MBE of 0.02 and represented the area better than the rest. The inter-comparison of AOD retrieved from multi-spectral satellite sensors showed a positive and satisfactory correlation between MODIS-Terra and OMI. Only MODIS-Aqua showed a linearly increasing mean annual AOD with R2 = 0.43. In three seasons (summer, autumn, and spring), AOD showed linear increments over the 12 years, with R2 ranging between 0.3 and 0.5. The three seasons also had nearly identical AODs of 0.23-0.28. However, winter had the lowest value of 0.2. MODIS-terra, out of the four sensors, exhibited increasing decadal tendency over the 2009-2020 period. Monthly analysis revealed that August had the highest AOD (0.265), and January had the lowest (0.14). The value of AOD obtained from this study over Dire Dawa shows a higher value during all seasons except during winter. Thus, this study gives a glimpse into the use of multi-spectral satellite sensors to monitor air quality over a semi-arid urban region.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"117 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Trend of Aerosol Optical Depth and its Implication on Urban Air Quality Using Multi-spectral Satellite Data During the Period from 2009 to 2020 over Dire Dawa, Ethiopia\",\"authors\":\"Teshager Argaw Endale, Gelana Amente Raba, K. T. Beketie, G. Feyisa\",\"doi\":\"10.46488/nept.2024.v23i01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on atmospheric aerosols, especially aerosol optical depth (AOD), over Dire Dawa, Ethiopia, from 2009 to 2020. At first, a correlation between the four satellite sensors and AERONET was made for validation purposes and to determine the sensor that best represents Dire Dawa. Intercomparisons were also made among the four satellite sensors. After all statistical tests, annual, seasonal, and decadal trend analyses were made. The validation results indicated that the AOD of MODIS-terra showed the best correlation with AERONET with R2 (0.78), RMSE (0.03), and MBE of 0.02 and represented the area better than the rest. The inter-comparison of AOD retrieved from multi-spectral satellite sensors showed a positive and satisfactory correlation between MODIS-Terra and OMI. Only MODIS-Aqua showed a linearly increasing mean annual AOD with R2 = 0.43. In three seasons (summer, autumn, and spring), AOD showed linear increments over the 12 years, with R2 ranging between 0.3 and 0.5. The three seasons also had nearly identical AODs of 0.23-0.28. However, winter had the lowest value of 0.2. MODIS-terra, out of the four sensors, exhibited increasing decadal tendency over the 2009-2020 period. Monthly analysis revealed that August had the highest AOD (0.265), and January had the lowest (0.14). The value of AOD obtained from this study over Dire Dawa shows a higher value during all seasons except during winter. Thus, this study gives a glimpse into the use of multi-spectral satellite sensors to monitor air quality over a semi-arid urban region.\",\"PeriodicalId\":18783,\"journal\":{\"name\":\"Nature Environment and Pollution Technology\",\"volume\":\"117 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Environment and Pollution Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46488/nept.2024.v23i01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Environment and Pollution Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46488/nept.2024.v23i01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
Exploring the Trend of Aerosol Optical Depth and its Implication on Urban Air Quality Using Multi-spectral Satellite Data During the Period from 2009 to 2020 over Dire Dawa, Ethiopia
This study focuses on atmospheric aerosols, especially aerosol optical depth (AOD), over Dire Dawa, Ethiopia, from 2009 to 2020. At first, a correlation between the four satellite sensors and AERONET was made for validation purposes and to determine the sensor that best represents Dire Dawa. Intercomparisons were also made among the four satellite sensors. After all statistical tests, annual, seasonal, and decadal trend analyses were made. The validation results indicated that the AOD of MODIS-terra showed the best correlation with AERONET with R2 (0.78), RMSE (0.03), and MBE of 0.02 and represented the area better than the rest. The inter-comparison of AOD retrieved from multi-spectral satellite sensors showed a positive and satisfactory correlation between MODIS-Terra and OMI. Only MODIS-Aqua showed a linearly increasing mean annual AOD with R2 = 0.43. In three seasons (summer, autumn, and spring), AOD showed linear increments over the 12 years, with R2 ranging between 0.3 and 0.5. The three seasons also had nearly identical AODs of 0.23-0.28. However, winter had the lowest value of 0.2. MODIS-terra, out of the four sensors, exhibited increasing decadal tendency over the 2009-2020 period. Monthly analysis revealed that August had the highest AOD (0.265), and January had the lowest (0.14). The value of AOD obtained from this study over Dire Dawa shows a higher value during all seasons except during winter. Thus, this study gives a glimpse into the use of multi-spectral satellite sensors to monitor air quality over a semi-arid urban region.
期刊介绍:
The journal was established initially by the name of Journal of Environment and Pollution in 1994, whose name was later changed to Nature Environment and Pollution Technology in the year 2002. It has now become an open access online journal from the year 2017 with ISSN: 2395-3454 (Online). The journal was established especially to promote the cause for environment and to cater the need for rapid dissemination of the vast scientific and technological data generated in this field. It is a part of many reputed international indexing and abstracting agencies. The Journal has evoked a highly encouraging response among the researchers, scientists and technocrats. It has a reputed International Editorial Board and publishes peer reviewed papers. The Journal has also been approved by UGC (India). The journal publishes both original research and review papers. The ideology and scope of the Journal includes the following. -Monitoring, control and management of air, water, soil and noise pollution -Solid waste management -Industrial hygiene and occupational health -Biomedical aspects of pollution -Toxicological studies -Radioactive pollution and radiation effects -Wastewater treatment and recycling etc. -Environmental modelling -Biodiversity and conservation -Dynamics and behaviour of chemicals in environment -Natural resources, wildlife, forests and wetlands etc. -Environmental laws and legal aspects -Environmental economics -Any other topic related to environment