氧化应激和 ROS 将糖尿病与癌症联系在一起

Homer S. Black
{"title":"氧化应激和 ROS 将糖尿病与癌症联系在一起","authors":"Homer S. Black","doi":"10.3390/jmp5010007","DOIUrl":null,"url":null,"abstract":"Type 2 diabetes mellitus (T2DM) accounts for one-sixth of deaths globally, whereas cancer is the second leading cause of death in the U.S. T2DM is a known risk factor for many cancers. Reactive oxygen species (ROS)-altered metabolic and signaling pathways link T2DM to cancer. These reprogrammed metabolic and signaling pathways contribute to diabetic complications, impact the redox balance (oxidative stress), and have differential roles in the early and late stages of cancer. A respiratory chain that is highly reduced (as under hyperglycemic conditions) or if reduced cofactors accumulate, ROS are greatly elevated. ROS may cause mutations in mitochondrial DNA (mtDNA) that result in further ROS elevations. The amplification of ROS results in the activation of PKC, an overarching signaling pathway that activates MAPK with a subsequent regulation in several factors that result in pathophysiological manifestations of T2DM and cancer. An upregulation in PKC leads to a deregulation in NF-kß, which regulates the PKB/P13/Akt pathway and orchestrates the cell survival, growth, proliferation, and glucose metabolism manifested in cancer. It also affects Insulin Receptor Substrate (IRS-1), decreasing insulin-stimulated glucose transport and glucose uptake, disrupting subsequent cell signaling pathways contributing to the development of T2DM. Dyslipidemia is a hallmark of T2DM and cancer. ROS-induced lipid peroxidation leads to systemic inflammation, producing inflammatory prostaglandins, cytokines, and chemokines that result in tumor proliferation, rapid tumor growth, and modulation of immunity. The dual role of ROS in the early and late stages of cancer makes antioxidant therapy precarious and may be responsible for controversial results. A system that delivers an antioxidant directly to mitochondria may be useful in inhibiting the formation of ROS early during the pre-diabetic stage, whereas antioxidant therapy must be halted in later stages to retard metastasis.","PeriodicalId":506404,"journal":{"name":"Journal of Molecular Pathology","volume":"114 48","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidative Stress and ROS Link Diabetes and Cancer\",\"authors\":\"Homer S. Black\",\"doi\":\"10.3390/jmp5010007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type 2 diabetes mellitus (T2DM) accounts for one-sixth of deaths globally, whereas cancer is the second leading cause of death in the U.S. T2DM is a known risk factor for many cancers. Reactive oxygen species (ROS)-altered metabolic and signaling pathways link T2DM to cancer. These reprogrammed metabolic and signaling pathways contribute to diabetic complications, impact the redox balance (oxidative stress), and have differential roles in the early and late stages of cancer. A respiratory chain that is highly reduced (as under hyperglycemic conditions) or if reduced cofactors accumulate, ROS are greatly elevated. ROS may cause mutations in mitochondrial DNA (mtDNA) that result in further ROS elevations. The amplification of ROS results in the activation of PKC, an overarching signaling pathway that activates MAPK with a subsequent regulation in several factors that result in pathophysiological manifestations of T2DM and cancer. An upregulation in PKC leads to a deregulation in NF-kß, which regulates the PKB/P13/Akt pathway and orchestrates the cell survival, growth, proliferation, and glucose metabolism manifested in cancer. It also affects Insulin Receptor Substrate (IRS-1), decreasing insulin-stimulated glucose transport and glucose uptake, disrupting subsequent cell signaling pathways contributing to the development of T2DM. Dyslipidemia is a hallmark of T2DM and cancer. ROS-induced lipid peroxidation leads to systemic inflammation, producing inflammatory prostaglandins, cytokines, and chemokines that result in tumor proliferation, rapid tumor growth, and modulation of immunity. The dual role of ROS in the early and late stages of cancer makes antioxidant therapy precarious and may be responsible for controversial results. A system that delivers an antioxidant directly to mitochondria may be useful in inhibiting the formation of ROS early during the pre-diabetic stage, whereas antioxidant therapy must be halted in later stages to retard metastasis.\",\"PeriodicalId\":506404,\"journal\":{\"name\":\"Journal of Molecular Pathology\",\"volume\":\"114 48\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmp5010007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmp5010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2 型糖尿病(T2DM)导致的死亡人数占全球死亡人数的六分之一,而癌症则是美国的第二大死因。活性氧(ROS)改变的代谢和信号通路将 T2DM 与癌症联系在一起。这些重新编程的代谢和信号通路会导致糖尿病并发症,影响氧化还原平衡(氧化应激),并在癌症的早期和晚期阶段发挥不同的作用。如果呼吸链高度还原(如在高血糖条件下)或还原辅因子积累,ROS 就会大大增加。ROS 可能会导致线粒体 DNA(mtDNA)发生突变,从而导致 ROS 进一步升高。ROS 的增加会导致 PKC 的活化,而 PKC 是激活 MAPK 的一个重要信号通路,随后会对多种因素进行调节,从而导致 T2DM 和癌症的病理生理表现。PKC 的上调导致 NF-kß 的失调,而 NF-kß 可调节 PKB/P13/Akt 通路,并协调癌症中的细胞存活、生长、增殖和葡萄糖代谢。它还会影响胰岛素受体底物(IRS-1),减少胰岛素刺激的葡萄糖转运和葡萄糖摄取,破坏随后的细胞信号通路,导致 T2DM 的发生。血脂异常是 T2DM 和癌症的标志。ROS 引发的脂质过氧化会导致全身炎症,产生炎性前列腺素、细胞因子和趋化因子,从而导致肿瘤增殖、肿瘤快速生长和免疫调节。ROS 在癌症早期和晚期的双重作用使得抗氧化疗法岌岌可危,这也可能是导致治疗结果存在争议的原因。直接向线粒体输送抗氧化剂的系统可能有助于抑制前期阶段的 ROS 形成,而后期阶段则必须停止抗氧化疗法以延缓转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxidative Stress and ROS Link Diabetes and Cancer
Type 2 diabetes mellitus (T2DM) accounts for one-sixth of deaths globally, whereas cancer is the second leading cause of death in the U.S. T2DM is a known risk factor for many cancers. Reactive oxygen species (ROS)-altered metabolic and signaling pathways link T2DM to cancer. These reprogrammed metabolic and signaling pathways contribute to diabetic complications, impact the redox balance (oxidative stress), and have differential roles in the early and late stages of cancer. A respiratory chain that is highly reduced (as under hyperglycemic conditions) or if reduced cofactors accumulate, ROS are greatly elevated. ROS may cause mutations in mitochondrial DNA (mtDNA) that result in further ROS elevations. The amplification of ROS results in the activation of PKC, an overarching signaling pathway that activates MAPK with a subsequent regulation in several factors that result in pathophysiological manifestations of T2DM and cancer. An upregulation in PKC leads to a deregulation in NF-kß, which regulates the PKB/P13/Akt pathway and orchestrates the cell survival, growth, proliferation, and glucose metabolism manifested in cancer. It also affects Insulin Receptor Substrate (IRS-1), decreasing insulin-stimulated glucose transport and glucose uptake, disrupting subsequent cell signaling pathways contributing to the development of T2DM. Dyslipidemia is a hallmark of T2DM and cancer. ROS-induced lipid peroxidation leads to systemic inflammation, producing inflammatory prostaglandins, cytokines, and chemokines that result in tumor proliferation, rapid tumor growth, and modulation of immunity. The dual role of ROS in the early and late stages of cancer makes antioxidant therapy precarious and may be responsible for controversial results. A system that delivers an antioxidant directly to mitochondria may be useful in inhibiting the formation of ROS early during the pre-diabetic stage, whereas antioxidant therapy must be halted in later stages to retard metastasis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Molecular Pathology of Iatrogenic Amyloidosis How Molecular and Ancillary Tests Can Help in Challenging Cytopathology Cases: Insights from the International Molecular Cytopathology Meeting Impact of Gut–Brain Axis on Hepatobiliary Diseases in Fetal Programming Liquid Biopsy Profiling with Multiple Tests in Patients with Metastatic Breast Cancer Oxidative Stress and ROS Link Diabetes and Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1