开发基于天气的生物量预测方程,以评估未来气候条件下的大田豌豆产量

Q3 Agricultural and Biological Sciences Journal of Agrometeorology Pub Date : 2024-03-01 DOI:10.54386/jam.v26i1.2461
Aishi Mukherjee, S. Banerjee, Sarathi Saha, Rajib Nath, Manish Kumar Naskar, A. Mukherjee
{"title":"开发基于天气的生物量预测方程,以评估未来气候条件下的大田豌豆产量","authors":"Aishi Mukherjee, S. Banerjee, Sarathi Saha, Rajib Nath, Manish Kumar Naskar, A. Mukherjee","doi":"10.54386/jam.v26i1.2461","DOIUrl":null,"url":null,"abstract":"The present research focuses on the variation of field pea production under different prevailing weather parameters, aiming to develop a reliable forecasting model. For that a field experiment was conducted in New Alluvial Zone of West Bengal during 2018-19 and 2019-20 with three different varieties (VL42, Indrira Matar, Rachana) of this region. Biomass predicting equation based on maximum temperature, minimum temperature and solar radiation was developed to estimate field pea yield for 2040-2099 period under SSP 2-4.5 and SSP 5-8.5 scenarios. It reveals that solar radiation positively influences crop biomass, while high maximum and minimum temperatures have adverse effects on yield. The developed forecasting equation demonstrated its accuracy (nRMSE=17.37%) by aligning closely with historical data, showcasing its potential for reliable predictions. Furthermore, the study delves into future climate scenarios, showing that increasing temperatures are likely to impact field pea yield negatively. Both biomass and yield showed decreasing trend for the years from 2040 to 2099. SSP 5-8.5 scenario, which is more pessimistic one, foresees a substantial reduction in crop productivity. This weather parameter-based biomass prediction equation can be effectively utilized as a method to assess the impact of climate change on agriculture. \nKeywords: Field pea, weather parameters, crop yield prediction, New Alluvial Zone, nRMSE","PeriodicalId":56127,"journal":{"name":"Journal of Agrometeorology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing weather-based biomass prediction equation to assess the field pea yield under future climatic scenario\",\"authors\":\"Aishi Mukherjee, S. Banerjee, Sarathi Saha, Rajib Nath, Manish Kumar Naskar, A. Mukherjee\",\"doi\":\"10.54386/jam.v26i1.2461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research focuses on the variation of field pea production under different prevailing weather parameters, aiming to develop a reliable forecasting model. For that a field experiment was conducted in New Alluvial Zone of West Bengal during 2018-19 and 2019-20 with three different varieties (VL42, Indrira Matar, Rachana) of this region. Biomass predicting equation based on maximum temperature, minimum temperature and solar radiation was developed to estimate field pea yield for 2040-2099 period under SSP 2-4.5 and SSP 5-8.5 scenarios. It reveals that solar radiation positively influences crop biomass, while high maximum and minimum temperatures have adverse effects on yield. The developed forecasting equation demonstrated its accuracy (nRMSE=17.37%) by aligning closely with historical data, showcasing its potential for reliable predictions. Furthermore, the study delves into future climate scenarios, showing that increasing temperatures are likely to impact field pea yield negatively. Both biomass and yield showed decreasing trend for the years from 2040 to 2099. SSP 5-8.5 scenario, which is more pessimistic one, foresees a substantial reduction in crop productivity. This weather parameter-based biomass prediction equation can be effectively utilized as a method to assess the impact of climate change on agriculture. \\nKeywords: Field pea, weather parameters, crop yield prediction, New Alluvial Zone, nRMSE\",\"PeriodicalId\":56127,\"journal\":{\"name\":\"Journal of Agrometeorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agrometeorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54386/jam.v26i1.2461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54386/jam.v26i1.2461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究重点关注不同天气参数下大田豌豆产量的变化,旨在开发一个可靠的预测模型。为此,2018-19 年度和 2019-20 年度在西孟加拉邦新冲积区进行了田间试验,使用了该地区的三个不同品种(VL42、Indrira Matar 和 Rachana)。根据最高温度、最低温度和太阳辐射建立了生物量预测方程,以估算 2040-2099 年 SSP 2-4.5 和 SSP 5-8.5 情景下的大田豌豆产量。结果表明,太阳辐射对作物生物量有积极影响,而较高的最高气温和最低气温则对产量有不利影响。所开发的预测方程与历史数据密切吻合,证明了其准确性(nRMSE=17.37%),展示了其进行可靠预测的潜力。此外,研究还深入探讨了未来的气候情景,表明气温升高可能会对大田豌豆产量产生负面影响。从 2040 年到 2099 年,生物量和产量都呈下降趋势。比较悲观的 SSP 5-8.5 情景预测作物产量将大幅下降。这一基于气象参数的生物量预测方程可作为评估气候变化对农业影响的有效方法。关键词大田豌豆 气象参数 农作物产量预测 新冲积区 nRMSE
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing weather-based biomass prediction equation to assess the field pea yield under future climatic scenario
The present research focuses on the variation of field pea production under different prevailing weather parameters, aiming to develop a reliable forecasting model. For that a field experiment was conducted in New Alluvial Zone of West Bengal during 2018-19 and 2019-20 with three different varieties (VL42, Indrira Matar, Rachana) of this region. Biomass predicting equation based on maximum temperature, minimum temperature and solar radiation was developed to estimate field pea yield for 2040-2099 period under SSP 2-4.5 and SSP 5-8.5 scenarios. It reveals that solar radiation positively influences crop biomass, while high maximum and minimum temperatures have adverse effects on yield. The developed forecasting equation demonstrated its accuracy (nRMSE=17.37%) by aligning closely with historical data, showcasing its potential for reliable predictions. Furthermore, the study delves into future climate scenarios, showing that increasing temperatures are likely to impact field pea yield negatively. Both biomass and yield showed decreasing trend for the years from 2040 to 2099. SSP 5-8.5 scenario, which is more pessimistic one, foresees a substantial reduction in crop productivity. This weather parameter-based biomass prediction equation can be effectively utilized as a method to assess the impact of climate change on agriculture. Keywords: Field pea, weather parameters, crop yield prediction, New Alluvial Zone, nRMSE
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agrometeorology
Journal of Agrometeorology 农林科学-农艺学
CiteScore
1.40
自引率
0.00%
发文量
95
审稿时长
>12 weeks
期刊介绍: The Journal of Agrometeorology (ISSN 0972-1665) , is a quarterly publication of Association of Agrometeorologists appearing in March, June, September and December. Since its beginning in 1999 till 2016, it was a half yearly publication appearing in June and December. In addition to regular issues, Association also brings out the special issues of the journal covering selected papers presented in seminar symposia organized by the Association.
期刊最新文献
Development of weather based statistical models for Rhizoctonia aerial blight disease of soybean in Tarai region of Uttarakhand Water use efficiency and water productivity of aerobic rice under drip irrigation and fertigation system by using daily soil water balance Drought severity estimation using NDWI index in Parbhani district of Maharashtra Comparison of machine learning classification algorithms based on weather variables and seed characteristics for the selection of paddy seed Growth performance and agrometeorological indices of rice under different establishment methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1