评估 Medline 的搜索策略,以确定有关长 COVID 对工作能力影响的研究

J. Gehanno, Isabelle Thaon, Carole Pelissier, L. Rollin
{"title":"评估 Medline 的搜索策略,以确定有关长 COVID 对工作能力影响的研究","authors":"J. Gehanno, Isabelle Thaon, Carole Pelissier, L. Rollin","doi":"10.3389/frma.2024.1300533","DOIUrl":null,"url":null,"abstract":"Studies on the impact of long COVID on work capacity are increasing but are difficult to locate in bibliographic databases, due to the heterogeneity of the terms used to describe this new condition and its consequences. This study aims to report on the effectiveness of different search strategies to find studies on the impact of long COVID on work participation in PubMed and to create validated search strings.We searched PubMed for articles published on Long COVID and including information about work. Relevant articles were identified and their reference lists were screened. Occupational health journals were manually scanned to identify articles that could have been missed. A total of 885 articles potentially relevant were collected and 120 were finally included in a gold standard database. Recall, Precision, and Number Needed to Read (NNR) of various keywords or combinations of keywords were assessed.Overall, 123 search-words alone or in combination were tested. The highest Recalls with a single MeSH term or textword were 23 and 90%, respectively. Two different search strings were developed, one optimizing Recall while keeping Precision acceptable (Recall 98.3%, Precision 15.9%, NNR 6.3) and one optimizing Precision while keeping Recall acceptable (Recall 90.8%, Precision 26.1%, NNR 3.8).No single MeSH term allows to find all relevant studies on the impact of long COVID on work ability in PubMed. The use of various MeSH and non-MeSH terms in combination is required to recover such studies without being overwhelmed by irrelevant articles.","PeriodicalId":73104,"journal":{"name":"Frontiers in research metrics and analytics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of search strategies in Medline to identify studies on the impact of long COVID on workability\",\"authors\":\"J. Gehanno, Isabelle Thaon, Carole Pelissier, L. Rollin\",\"doi\":\"10.3389/frma.2024.1300533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies on the impact of long COVID on work capacity are increasing but are difficult to locate in bibliographic databases, due to the heterogeneity of the terms used to describe this new condition and its consequences. This study aims to report on the effectiveness of different search strategies to find studies on the impact of long COVID on work participation in PubMed and to create validated search strings.We searched PubMed for articles published on Long COVID and including information about work. Relevant articles were identified and their reference lists were screened. Occupational health journals were manually scanned to identify articles that could have been missed. A total of 885 articles potentially relevant were collected and 120 were finally included in a gold standard database. Recall, Precision, and Number Needed to Read (NNR) of various keywords or combinations of keywords were assessed.Overall, 123 search-words alone or in combination were tested. The highest Recalls with a single MeSH term or textword were 23 and 90%, respectively. Two different search strings were developed, one optimizing Recall while keeping Precision acceptable (Recall 98.3%, Precision 15.9%, NNR 6.3) and one optimizing Precision while keeping Recall acceptable (Recall 90.8%, Precision 26.1%, NNR 3.8).No single MeSH term allows to find all relevant studies on the impact of long COVID on work ability in PubMed. The use of various MeSH and non-MeSH terms in combination is required to recover such studies without being overwhelmed by irrelevant articles.\",\"PeriodicalId\":73104,\"journal\":{\"name\":\"Frontiers in research metrics and analytics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in research metrics and analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frma.2024.1300533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in research metrics and analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frma.2024.1300533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有关长期慢性阻塞性肺气肿对工作能力的影响的研究越来越多,但由于描述这种新疾病及其后果的术语不尽相同,因此很难在文献数据库中找到相关研究。本研究旨在报告不同搜索策略的有效性,以便在 PubMed 上找到有关长 COVID 对工作参与影响的研究,并创建有效的搜索字符串。我们在 PubMed 上搜索了发表过的有关长 COVID 并包含工作信息的文章,确定了相关文章并对其参考文献列表进行了筛选。我们还对职业健康期刊进行了人工扫描,以确定可能遗漏的文章。共收集到 885 篇可能相关的文章,最终有 120 篇被纳入金标准数据库。对各种关键词或关键词组合的回收率、精确率和阅读需求数(NNR)进行了评估。单个 MeSH 术语或文本词的最高召回率分别为 23% 和 90%。我们开发了两种不同的搜索字符串,一种在保持可接受精确度的同时优化了召回率(召回率为 98.3%,精确度为 15.9%,净召回率为 6.3),另一种在保持可接受召回率的同时优化了精确度(召回率为 90.8%,精确度为 26.1%,净召回率为 3.8)。没有一个单一的 MeSH 词可以在 PubMed 中找到所有关于长 COVID 对工作能力影响的相关研究,因此需要结合使用各种 MeSH 和非 MeSH 词来检索此类研究,而不会被不相关的文章淹没。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of search strategies in Medline to identify studies on the impact of long COVID on workability
Studies on the impact of long COVID on work capacity are increasing but are difficult to locate in bibliographic databases, due to the heterogeneity of the terms used to describe this new condition and its consequences. This study aims to report on the effectiveness of different search strategies to find studies on the impact of long COVID on work participation in PubMed and to create validated search strings.We searched PubMed for articles published on Long COVID and including information about work. Relevant articles were identified and their reference lists were screened. Occupational health journals were manually scanned to identify articles that could have been missed. A total of 885 articles potentially relevant were collected and 120 were finally included in a gold standard database. Recall, Precision, and Number Needed to Read (NNR) of various keywords or combinations of keywords were assessed.Overall, 123 search-words alone or in combination were tested. The highest Recalls with a single MeSH term or textword were 23 and 90%, respectively. Two different search strings were developed, one optimizing Recall while keeping Precision acceptable (Recall 98.3%, Precision 15.9%, NNR 6.3) and one optimizing Precision while keeping Recall acceptable (Recall 90.8%, Precision 26.1%, NNR 3.8).No single MeSH term allows to find all relevant studies on the impact of long COVID on work ability in PubMed. The use of various MeSH and non-MeSH terms in combination is required to recover such studies without being overwhelmed by irrelevant articles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Navigating algorithm bias in AI: ensuring fairness and trust in Africa. The ethics of knowledge sharing: a feminist examination of intellectual property rights and open-source materials in gender transformative methodologies. Complexity and phase transitions in citation networks: insights from artificial intelligence research. Designing measures of complex collaborations with participatory, evidence-centered design. Patent data-driven analysis of literature associations with changing innovation trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1