{"title":"机器学习模型揭示了不同的疾病亚群,并提高了对 SCN8A 功能增益变异致病个体的诊断和预后准确性。","authors":"Joshua B Hack, Joseph C Watkins, Michael F Hammer","doi":"10.1242/bio.060286","DOIUrl":null,"url":null,"abstract":"<p><p>Distinguishing clinical subgroups for patients suffering with diseases characterized by a wide phenotypic spectrum is essential for developing precision therapies. Patients with gain-of-function (GOF) variants in the SCN8A gene exhibit substantial clinical heterogeneity, viewed historically as a linear spectrum ranging from mild to severe. To test for hidden clinical subgroups, we applied two machine-learning algorithms to analyze a dataset of patient features collected by the International SCN8A Patient Registry. We used two research methodologies: a supervised approach that incorporated feature severity cutoffs based on clinical conventions, and an unsupervised approach employing an entirely data-driven strategy. Both approaches found statistical support for three distinct subgroups and were validated by correlation analyses using external variables. However, distinguishing features of the three subgroups within each approach were not concordant, suggesting a more complex phenotypic landscape. The unsupervised approach yielded strong support for a model involving three partially ordered subgroups rather than a linear spectrum. Application of these machine-learning approaches may lead to improved prognosis and clinical management of individuals with SCN8A GOF variants and provide insights into the underlying mechanisms of the disease.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070785/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning models reveal distinct disease subgroups and improve diagnostic and prognostic accuracy for individuals with pathogenic SCN8A gain-of-function variants.\",\"authors\":\"Joshua B Hack, Joseph C Watkins, Michael F Hammer\",\"doi\":\"10.1242/bio.060286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Distinguishing clinical subgroups for patients suffering with diseases characterized by a wide phenotypic spectrum is essential for developing precision therapies. Patients with gain-of-function (GOF) variants in the SCN8A gene exhibit substantial clinical heterogeneity, viewed historically as a linear spectrum ranging from mild to severe. To test for hidden clinical subgroups, we applied two machine-learning algorithms to analyze a dataset of patient features collected by the International SCN8A Patient Registry. We used two research methodologies: a supervised approach that incorporated feature severity cutoffs based on clinical conventions, and an unsupervised approach employing an entirely data-driven strategy. Both approaches found statistical support for three distinct subgroups and were validated by correlation analyses using external variables. However, distinguishing features of the three subgroups within each approach were not concordant, suggesting a more complex phenotypic landscape. The unsupervised approach yielded strong support for a model involving three partially ordered subgroups rather than a linear spectrum. Application of these machine-learning approaches may lead to improved prognosis and clinical management of individuals with SCN8A GOF variants and provide insights into the underlying mechanisms of the disease.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070785/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/bio.060286\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060286","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine learning models reveal distinct disease subgroups and improve diagnostic and prognostic accuracy for individuals with pathogenic SCN8A gain-of-function variants.
Distinguishing clinical subgroups for patients suffering with diseases characterized by a wide phenotypic spectrum is essential for developing precision therapies. Patients with gain-of-function (GOF) variants in the SCN8A gene exhibit substantial clinical heterogeneity, viewed historically as a linear spectrum ranging from mild to severe. To test for hidden clinical subgroups, we applied two machine-learning algorithms to analyze a dataset of patient features collected by the International SCN8A Patient Registry. We used two research methodologies: a supervised approach that incorporated feature severity cutoffs based on clinical conventions, and an unsupervised approach employing an entirely data-driven strategy. Both approaches found statistical support for three distinct subgroups and were validated by correlation analyses using external variables. However, distinguishing features of the three subgroups within each approach were not concordant, suggesting a more complex phenotypic landscape. The unsupervised approach yielded strong support for a model involving three partially ordered subgroups rather than a linear spectrum. Application of these machine-learning approaches may lead to improved prognosis and clinical management of individuals with SCN8A GOF variants and provide insights into the underlying mechanisms of the disease.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.