HAND2-AS1通过TLR4/NOX2/DUOX2轴促进铁凋亡以逆转肝细胞癌的伦伐替尼抗性

IF 2.3 4区 医学 Q3 ONCOLOGY Current cancer drug targets Pub Date : 2024-03-07 DOI:10.2174/0115680096279597240219055135
Zheng Song, Yu Zhang, Wei Luo, Chao Sun, Caihong Lv, Sihao Wang, Quanwei He, Ran Xu, Zhaofang Bai, Xiujuan Chang, Yongping Yang
{"title":"HAND2-AS1通过TLR4/NOX2/DUOX2轴促进铁凋亡以逆转肝细胞癌的伦伐替尼抗性","authors":"Zheng Song, Yu Zhang, Wei Luo, Chao Sun, Caihong Lv, Sihao Wang, Quanwei He, Ran Xu, Zhaofang Bai, Xiujuan Chang, Yongping Yang","doi":"10.2174/0115680096279597240219055135","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Lenvatinib resistance causes less than 40% of the objective response rate. Therefore, it is urgent to explore new therapeutic targets to reverse the lenvatinib resistance for HCC. HAND2-AS1 is a critical tumor suppressor gene in various cancers.</p><p><strong>Methods: </strong>Here, we investigated the role of HAND2-AS1 in the molecular mechanism of lenvatinib resistance in HCC. It was found that HAND2-AS1 was lowly expressed in the HepG2 lenvatinib resistance (HepG2-LR) cells and HCC tissues and associated with progression-free intervals via TCGA. Overexpression of HAND2-AS1 (OE-HAND2-AS1) decreased the IC50 of lenvatinib in HepG2-LR cells to reverse lenvatinib resistance. Moreover, OE-HAND2-AS1 induced intracellular concentrations of malondialdehyde (MDA) and lipid ROS and decreased the ratio of glutathione to glutathione disulfide (GSH/GSSG) to promote ferroptosis.</p><p><strong>Results: </strong>A xenograft model in which nude mice were injected with OE-HAND2-AS1 HepG2-LR cells confirmed that OE-HAND2-AS1 could reverse lenvatinib resistance and decrease tumor formation in vivo. HAND2-AS1 promoted the expression of ferroptosis-related genes (TLR4, NOX2, and DUOX2) and promoted ferroptosis to reverse lenvatinib resistance by increasing TLR4/ NOX2/DUOX2 via competing endogenous miR-219a-1-3p in HCC cells. Besides, patients with a low HAND2-AS1 level had early recurrence after resection.</p><p><strong>Conclusion: </strong>These findings suggested that HAND2-AS1 may be a potential therapeutic target and an indicator of early recurrence for HCC.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HAND2-AS1 Promotes Ferroptosis to Reverse Lenvatinib Resistance in Hepatocellular Carcinoma by TLR4/NOX2/DUOX2 Axis.\",\"authors\":\"Zheng Song, Yu Zhang, Wei Luo, Chao Sun, Caihong Lv, Sihao Wang, Quanwei He, Ran Xu, Zhaofang Bai, Xiujuan Chang, Yongping Yang\",\"doi\":\"10.2174/0115680096279597240219055135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Lenvatinib resistance causes less than 40% of the objective response rate. Therefore, it is urgent to explore new therapeutic targets to reverse the lenvatinib resistance for HCC. HAND2-AS1 is a critical tumor suppressor gene in various cancers.</p><p><strong>Methods: </strong>Here, we investigated the role of HAND2-AS1 in the molecular mechanism of lenvatinib resistance in HCC. It was found that HAND2-AS1 was lowly expressed in the HepG2 lenvatinib resistance (HepG2-LR) cells and HCC tissues and associated with progression-free intervals via TCGA. Overexpression of HAND2-AS1 (OE-HAND2-AS1) decreased the IC50 of lenvatinib in HepG2-LR cells to reverse lenvatinib resistance. Moreover, OE-HAND2-AS1 induced intracellular concentrations of malondialdehyde (MDA) and lipid ROS and decreased the ratio of glutathione to glutathione disulfide (GSH/GSSG) to promote ferroptosis.</p><p><strong>Results: </strong>A xenograft model in which nude mice were injected with OE-HAND2-AS1 HepG2-LR cells confirmed that OE-HAND2-AS1 could reverse lenvatinib resistance and decrease tumor formation in vivo. HAND2-AS1 promoted the expression of ferroptosis-related genes (TLR4, NOX2, and DUOX2) and promoted ferroptosis to reverse lenvatinib resistance by increasing TLR4/ NOX2/DUOX2 via competing endogenous miR-219a-1-3p in HCC cells. Besides, patients with a low HAND2-AS1 level had early recurrence after resection.</p><p><strong>Conclusion: </strong>These findings suggested that HAND2-AS1 may be a potential therapeutic target and an indicator of early recurrence for HCC.</p>\",\"PeriodicalId\":10816,\"journal\":{\"name\":\"Current cancer drug targets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current cancer drug targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680096279597240219055135\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current cancer drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096279597240219055135","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介来伐替尼耐药导致的客观应答率不足40%。因此,探索逆转来伐替尼耐药的新治疗靶点已迫在眉睫。方法:我们研究了HAND2-AS1在来伐替尼耐药分子机制中的作用。通过TCGA发现,HAND2-AS1在HepG2来伐替尼耐药(HepG2-LR)细胞和HCC组织中低表达,并与无进展间隔期相关。过表达HAND2-AS1(OE-HAND2-AS1)可降低来伐替尼在HepG2-LR细胞中的IC50,从而逆转来伐替尼耐药。此外,OE-HAND2-AS1还能诱导细胞内丙二醛(MDA)和脂质ROS的浓度,并降低谷胱甘肽与谷胱甘肽二硫化物(GSH/GSSG)的比率,从而促进铁变态反应:结果:裸鼠注射OE-HAND2-AS1 HepG2-LR细胞的异种移植模型证实,OE-HAND2-AS1可逆转来伐替尼耐药性并减少体内肿瘤的形成。HAND2-AS1通过竞争HCC细胞中的内源性miR-219a-1-3p,促进铁变态反应相关基因(TLR4、NOX2和DUOX2)的表达,并通过增加TLR4/ NOX2/DUOX2促进铁变态反应,从而逆转来伐替尼耐药。此外,HAND2-AS1水平较低的患者切除后复发较早:这些研究结果表明,HAND2-AS1可能是潜在的治疗靶点,也是HCC早期复发的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HAND2-AS1 Promotes Ferroptosis to Reverse Lenvatinib Resistance in Hepatocellular Carcinoma by TLR4/NOX2/DUOX2 Axis.

Introduction: Lenvatinib resistance causes less than 40% of the objective response rate. Therefore, it is urgent to explore new therapeutic targets to reverse the lenvatinib resistance for HCC. HAND2-AS1 is a critical tumor suppressor gene in various cancers.

Methods: Here, we investigated the role of HAND2-AS1 in the molecular mechanism of lenvatinib resistance in HCC. It was found that HAND2-AS1 was lowly expressed in the HepG2 lenvatinib resistance (HepG2-LR) cells and HCC tissues and associated with progression-free intervals via TCGA. Overexpression of HAND2-AS1 (OE-HAND2-AS1) decreased the IC50 of lenvatinib in HepG2-LR cells to reverse lenvatinib resistance. Moreover, OE-HAND2-AS1 induced intracellular concentrations of malondialdehyde (MDA) and lipid ROS and decreased the ratio of glutathione to glutathione disulfide (GSH/GSSG) to promote ferroptosis.

Results: A xenograft model in which nude mice were injected with OE-HAND2-AS1 HepG2-LR cells confirmed that OE-HAND2-AS1 could reverse lenvatinib resistance and decrease tumor formation in vivo. HAND2-AS1 promoted the expression of ferroptosis-related genes (TLR4, NOX2, and DUOX2) and promoted ferroptosis to reverse lenvatinib resistance by increasing TLR4/ NOX2/DUOX2 via competing endogenous miR-219a-1-3p in HCC cells. Besides, patients with a low HAND2-AS1 level had early recurrence after resection.

Conclusion: These findings suggested that HAND2-AS1 may be a potential therapeutic target and an indicator of early recurrence for HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current cancer drug targets
Current cancer drug targets 医学-肿瘤学
CiteScore
5.40
自引率
0.00%
发文量
105
审稿时长
1 months
期刊介绍: Current Cancer Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular drug targets involved in cancer, e.g. disease specific proteins, receptors, enzymes and genes. Current Cancer Drug Targets publishes original research articles, letters, reviews / mini-reviews, drug clinical trial studies and guest edited thematic issues written by leaders in the field covering a range of current topics on drug targets involved in cancer. As the discovery, identification, characterization and validation of novel human drug targets for anti-cancer drug discovery continues to grow; this journal has become essential reading for all pharmaceutical scientists involved in drug discovery and development.
期刊最新文献
Screening miRNAs to Hinder the Tumorigenesis of Renal Clear Cell Carcinoma Associated with KDR Expression Dendrobine Suppresses Tumor Growth by Regulating the PD-1/PD-L1 Checkpoint Pathway in Lung Cancer. Magnesium as a Co-Factor: A Vital Cation with Pro- and Anti-Tumor Effects. Progressive Dynamics of Cancer Stem Cells in Oral Squamous Cell Carcinoma. SELENBP1 Inhibits the Warburg Effect and Tumor Growth by Reducing the HIF1α Expression in Colorectal Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1