热休克蛋白在炎症性肠病发病过程中的多重作用》(The Multiple Role of Heat Shock Proteins in the Development of Inflammatory Bowel Disease)。

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Current molecular medicine Pub Date : 2024-03-07 DOI:10.2174/0115665240286793240306053111
Jinfeng Su, Haiyan Wang, Zun Wang
{"title":"热休克蛋白在炎症性肠病发病过程中的多重作用》(The Multiple Role of Heat Shock Proteins in the Development of Inflammatory Bowel Disease)。","authors":"Jinfeng Su, Haiyan Wang, Zun Wang","doi":"10.2174/0115665240286793240306053111","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD), a chronic inflammatory condition of the human intestine, comprises Crohn's Disease (CD) and Ulcerative Colitis (UC). IBD causes severe gastrointestinal symptoms and increases the risk of developing colorectal carcinoma. Although the etiology of IBD remains ambiguous, complex interactions between genetic predisposition, microbiota, epithelial barrier, and immune factors have been implicated. The disruption of intestinal homeostasis is a cardinal characteristic of IBD. Patients with IBD exhibit intestinal microbiota dysbiosis, impaired epithelial tight junctions, and immune dysregulation; however, the relationship between them is not completely understood. As the largest body surface is exposed to the external environment, the gastrointestinal tract epithelium is continuously subjected to environmental and endogenous stressors that can disrupt cellular homeostasis and survival. Heat shock proteins (HSPs) are endogenous factors that play crucial roles in various physiological processes, such as maintaining intestinal homeostasis and influencing IBD progression. Specifically, HSPs share an intricate association with microbes, intestinal epithelium, and the immune system. In this review, we aim to elucidate the impact of HSPs on IBD development by examining their involvement in the interactions between the intestinal microbiota, epithelial barrier, and immune system. The recent clinical and animal models and cellular research delineating the relationship between HSPs and IBD are summarized. Additionally, new perspectives on IBD treatment approaches have been proposed.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Multiple Roles of Heat Shock Proteins in the Development of Inflammatory Bowel Disease.\",\"authors\":\"Jinfeng Su, Haiyan Wang, Zun Wang\",\"doi\":\"10.2174/0115665240286793240306053111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel disease (IBD), a chronic inflammatory condition of the human intestine, comprises Crohn's Disease (CD) and Ulcerative Colitis (UC). IBD causes severe gastrointestinal symptoms and increases the risk of developing colorectal carcinoma. Although the etiology of IBD remains ambiguous, complex interactions between genetic predisposition, microbiota, epithelial barrier, and immune factors have been implicated. The disruption of intestinal homeostasis is a cardinal characteristic of IBD. Patients with IBD exhibit intestinal microbiota dysbiosis, impaired epithelial tight junctions, and immune dysregulation; however, the relationship between them is not completely understood. As the largest body surface is exposed to the external environment, the gastrointestinal tract epithelium is continuously subjected to environmental and endogenous stressors that can disrupt cellular homeostasis and survival. Heat shock proteins (HSPs) are endogenous factors that play crucial roles in various physiological processes, such as maintaining intestinal homeostasis and influencing IBD progression. Specifically, HSPs share an intricate association with microbes, intestinal epithelium, and the immune system. In this review, we aim to elucidate the impact of HSPs on IBD development by examining their involvement in the interactions between the intestinal microbiota, epithelial barrier, and immune system. The recent clinical and animal models and cellular research delineating the relationship between HSPs and IBD are summarized. Additionally, new perspectives on IBD treatment approaches have been proposed.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665240286793240306053111\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240286793240306053111","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

炎症性肠病(IBD)是一种慢性肠道炎症,包括克罗恩病(CD)和溃疡性结肠炎(UC)。IBD 会导致严重的胃肠道症状,并增加罹患结直肠癌的风险。虽然 IBD 的病因仍不明确,但遗传易感性、微生物群、上皮屏障和免疫因素之间复杂的相互作用已被证实。肠道平衡被破坏是 IBD 的主要特征。IBD 患者表现出肠道微生物群失调、上皮紧密连接受损和免疫调节失调;然而,它们之间的关系尚未完全明了。作为暴露于外部环境的最大体表,胃肠道上皮不断受到环境和内源性应激源的影响,这些应激源会破坏细胞的稳态和生存。热休克蛋白(HSPs)是在各种生理过程中发挥关键作用的内源性因子,如维持肠道稳态和影响 IBD 的进展。具体而言,HSP 与微生物、肠上皮细胞和免疫系统有着错综复杂的联系。在这篇综述中,我们旨在通过研究 HSPs 参与肠道微生物群、上皮屏障和免疫系统之间的相互作用,阐明 HSPs 对 IBD 发展的影响。文章概述了近期的临床和动物模型以及细胞研究,这些研究界定了 HSPs 与 IBD 之间的关系。此外,还提出了有关 IBD 治疗方法的新观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Multiple Roles of Heat Shock Proteins in the Development of Inflammatory Bowel Disease.

Inflammatory bowel disease (IBD), a chronic inflammatory condition of the human intestine, comprises Crohn's Disease (CD) and Ulcerative Colitis (UC). IBD causes severe gastrointestinal symptoms and increases the risk of developing colorectal carcinoma. Although the etiology of IBD remains ambiguous, complex interactions between genetic predisposition, microbiota, epithelial barrier, and immune factors have been implicated. The disruption of intestinal homeostasis is a cardinal characteristic of IBD. Patients with IBD exhibit intestinal microbiota dysbiosis, impaired epithelial tight junctions, and immune dysregulation; however, the relationship between them is not completely understood. As the largest body surface is exposed to the external environment, the gastrointestinal tract epithelium is continuously subjected to environmental and endogenous stressors that can disrupt cellular homeostasis and survival. Heat shock proteins (HSPs) are endogenous factors that play crucial roles in various physiological processes, such as maintaining intestinal homeostasis and influencing IBD progression. Specifically, HSPs share an intricate association with microbes, intestinal epithelium, and the immune system. In this review, we aim to elucidate the impact of HSPs on IBD development by examining their involvement in the interactions between the intestinal microbiota, epithelial barrier, and immune system. The recent clinical and animal models and cellular research delineating the relationship between HSPs and IBD are summarized. Additionally, new perspectives on IBD treatment approaches have been proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current molecular medicine
Current molecular medicine 医学-医学:研究与实验
CiteScore
5.00
自引率
4.00%
发文量
141
审稿时长
4-8 weeks
期刊介绍: Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
期刊最新文献
Role of Nrf2 in Epilepsy Treatment. Exploring the Neuroprotective Potential of Icariin through Modulation of Neural Pathways in the Treatment of Neurological Diseases. Multiplex PCR System for the Diagnosis of Plague. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Fascin Inhibitor NP-G2-044 Decreases Cell Metastasis and Increases Overall Survival of Mice-Bearing Lung Cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1