{"title":"支持 TM6SF2 在 VLDL 代谢中发挥作用的基础和转化证据。","authors":"Jing Liu, Henry N Ginsberg, Gissette Reyes-Soffer","doi":"10.1097/MOL.0000000000000930","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Transmembrane 6 superfamily member 2 ( TM6SF2 ) gene was identified through exome-wide studies in 2014. A genetic variant from glutamic acid to lysine substitution at amino acid position 167 (NM_001001524.3:c.499G> A) (p.Gln167Lys/p.E167K, rs58542926) was discovered (p.E167K) to be highly associated with increased hepatic fat content and reduced levels of plasma triglycerides and LDL cholesterol. In this review, we focus on the discovery of TM6SF2 and its role in VLDL secretion pathways. Human data suggest TM6SF2 is linked to hepatic steatosis and cardiovascular disease (CVD), hence understanding its metabolic pathways is of high scientific interest.</p><p><strong>Recent findings: </strong>Since its discovery, completed research studies in cell, rodent and human models have defined the role of TM6SF2 and its links to human disease. TM6SF2 resides in the endoplasmic reticulum (ER) and the ER-Golgi interface and helps with the lipidation of nascent VLDL, the main carrier of triglycerides from the liver to the periphery. Consistent results from cells and rodents indicated that the secretion of triglycerides is reduced in carriers of the p.E167K variant or when hepatic TM6SF2 is deleted. However, data for secretion of APOB, the main protein of VLDL particles responsible for triglycerides transport, are inconsistent.</p><p><strong>Summary: </strong>The identification of genetic variants that are highly associated with human disease presentation should be followed by the validation and investigation into the pathways that regulate disease mechanisms. In this review, we highlight the role of TM6SF2 and its role in processing of liver triglycerides.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"157-161"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168781/pdf/","citationCount":"0","resultStr":"{\"title\":\"Basic and translational evidence supporting the role of TM6SF2 in VLDL metabolism.\",\"authors\":\"Jing Liu, Henry N Ginsberg, Gissette Reyes-Soffer\",\"doi\":\"10.1097/MOL.0000000000000930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Transmembrane 6 superfamily member 2 ( TM6SF2 ) gene was identified through exome-wide studies in 2014. A genetic variant from glutamic acid to lysine substitution at amino acid position 167 (NM_001001524.3:c.499G> A) (p.Gln167Lys/p.E167K, rs58542926) was discovered (p.E167K) to be highly associated with increased hepatic fat content and reduced levels of plasma triglycerides and LDL cholesterol. In this review, we focus on the discovery of TM6SF2 and its role in VLDL secretion pathways. Human data suggest TM6SF2 is linked to hepatic steatosis and cardiovascular disease (CVD), hence understanding its metabolic pathways is of high scientific interest.</p><p><strong>Recent findings: </strong>Since its discovery, completed research studies in cell, rodent and human models have defined the role of TM6SF2 and its links to human disease. TM6SF2 resides in the endoplasmic reticulum (ER) and the ER-Golgi interface and helps with the lipidation of nascent VLDL, the main carrier of triglycerides from the liver to the periphery. Consistent results from cells and rodents indicated that the secretion of triglycerides is reduced in carriers of the p.E167K variant or when hepatic TM6SF2 is deleted. However, data for secretion of APOB, the main protein of VLDL particles responsible for triglycerides transport, are inconsistent.</p><p><strong>Summary: </strong>The identification of genetic variants that are highly associated with human disease presentation should be followed by the validation and investigation into the pathways that regulate disease mechanisms. In this review, we highlight the role of TM6SF2 and its role in processing of liver triglycerides.</p>\",\"PeriodicalId\":11109,\"journal\":{\"name\":\"Current opinion in lipidology\",\"volume\":\" \",\"pages\":\"157-161\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168781/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in lipidology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MOL.0000000000000930\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in lipidology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOL.0000000000000930","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Basic and translational evidence supporting the role of TM6SF2 in VLDL metabolism.
Purpose of review: Transmembrane 6 superfamily member 2 ( TM6SF2 ) gene was identified through exome-wide studies in 2014. A genetic variant from glutamic acid to lysine substitution at amino acid position 167 (NM_001001524.3:c.499G> A) (p.Gln167Lys/p.E167K, rs58542926) was discovered (p.E167K) to be highly associated with increased hepatic fat content and reduced levels of plasma triglycerides and LDL cholesterol. In this review, we focus on the discovery of TM6SF2 and its role in VLDL secretion pathways. Human data suggest TM6SF2 is linked to hepatic steatosis and cardiovascular disease (CVD), hence understanding its metabolic pathways is of high scientific interest.
Recent findings: Since its discovery, completed research studies in cell, rodent and human models have defined the role of TM6SF2 and its links to human disease. TM6SF2 resides in the endoplasmic reticulum (ER) and the ER-Golgi interface and helps with the lipidation of nascent VLDL, the main carrier of triglycerides from the liver to the periphery. Consistent results from cells and rodents indicated that the secretion of triglycerides is reduced in carriers of the p.E167K variant or when hepatic TM6SF2 is deleted. However, data for secretion of APOB, the main protein of VLDL particles responsible for triglycerides transport, are inconsistent.
Summary: The identification of genetic variants that are highly associated with human disease presentation should be followed by the validation and investigation into the pathways that regulate disease mechanisms. In this review, we highlight the role of TM6SF2 and its role in processing of liver triglycerides.
期刊介绍:
With its easy-to-digest reviews on important advances in world literature, Current Opinion in Lipidology offers expert evaluation on a wide range of topics from six key disciplines including nutrition and metabolism, genetics and molecular biology, and hyperlipidaemia and cardiovascular disease. Published bimonthly, each issue covers in detail the most pertinent advances in these fields from the previous year. This is supplemented by a section of Bimonthly Updates, which deliver an insight into new developments at the cutting edge of the disciplines covered in the journal.