不同铁(II)-三吡啶衍生物光谱行为的 DFT 研究及其在 DSSC 中的应用。

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of molecular graphics & modelling Pub Date : 2024-03-04 DOI:10.1016/j.jmgm.2024.108753
Evangelia Athanasopoulos, Jeanet Conradie
{"title":"不同铁(II)-三吡啶衍生物光谱行为的 DFT 研究及其在 DSSC 中的应用。","authors":"Evangelia Athanasopoulos,&nbsp;Jeanet Conradie","doi":"10.1016/j.jmgm.2024.108753","DOIUrl":null,"url":null,"abstract":"<div><p>Through a comprehensive computational analysis utilizing Density Functional Theory (DFT), we clarify the electronic structure and spectroscopic properties of modified iron(II)-terpyridine derivatives, with the aim of enhancing the efficiency of Dye-Sensitized Solar Cells (DSSCs). We optimized a series of nineteen iron(II)-terpyridine derivatives and related compounds in acetonitrile (MeCN) as the solvent using TDDFT, evaluating their potential as dyes for DSSCs. From the conducted computations on the optimized geometries of the nineteen [Fe(L<sup>n</sup>)<sub>2</sub>]<sup>2+</sup> complexes, containing substituted terpyridine and related ligands L<sup>1</sup>-L<sup>19</sup>, we determined the wavelengths (<em>λ</em> in nm), transition energy (<em>E</em> in eV), oscillator strength (<em>f</em>), type of transitions, excited state lifetime (<em>τ</em>), light harvesting efficiency (LHE), frontier orbital character and their energies (<em>E</em><sub>LUMO</sub>/<em>E</em><sub>HOMO</sub>), natural transition orbitals (NTOs), injection driving force of a dye (Δ<em>G</em><sub>inject</sub>), and regeneration driving force of a dye (Δ<em>G</em><sub>regenerate</sub>). Results show that the theoretically calculated values for assessing dye efficiency in a DSSC correlate with available experimental values. The UV–visible spectra of [Fe(L<sup>n</sup>)<sub>2</sub>]<sup>2+</sup> exhibited a peak above 500 nm (<em>λ</em><sub>max</sub>) in the visible region, attributed to the ligand-to-metal charge transfer band (LMCT) in literature, and a significant absorbance peak at approximately 300 nm (<em>λ</em><sub>A,max</sub>) in the UV region. The M06-D3/CEP-121G method replicated all reported <em>λ</em><sub>max</sub> and <em>λ</em><sub>A,max</sub> values with a mean absolute deviation (MAD) of 21 and 18 nm, respectively. Our findings underscore the connections between electronic modifications and absorption spectra, emphasizing their impact on the light-harvesting capabilities and overall performance of DSSCs. This research contributes to the advancement of fundamental principles governing the design and optimization of novel photovoltaic materials, facilitating the development of more efficient and sustainable solar energy technologies.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1093326324000536/pdfft?md5=e57be4ef77e0e23c32eb385ec4657676&pid=1-s2.0-S1093326324000536-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DFT study of the spectroscopic behaviour of different iron(II)-terpyridine derivatives with application in DSSCs\",\"authors\":\"Evangelia Athanasopoulos,&nbsp;Jeanet Conradie\",\"doi\":\"10.1016/j.jmgm.2024.108753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Through a comprehensive computational analysis utilizing Density Functional Theory (DFT), we clarify the electronic structure and spectroscopic properties of modified iron(II)-terpyridine derivatives, with the aim of enhancing the efficiency of Dye-Sensitized Solar Cells (DSSCs). We optimized a series of nineteen iron(II)-terpyridine derivatives and related compounds in acetonitrile (MeCN) as the solvent using TDDFT, evaluating their potential as dyes for DSSCs. From the conducted computations on the optimized geometries of the nineteen [Fe(L<sup>n</sup>)<sub>2</sub>]<sup>2+</sup> complexes, containing substituted terpyridine and related ligands L<sup>1</sup>-L<sup>19</sup>, we determined the wavelengths (<em>λ</em> in nm), transition energy (<em>E</em> in eV), oscillator strength (<em>f</em>), type of transitions, excited state lifetime (<em>τ</em>), light harvesting efficiency (LHE), frontier orbital character and their energies (<em>E</em><sub>LUMO</sub>/<em>E</em><sub>HOMO</sub>), natural transition orbitals (NTOs), injection driving force of a dye (Δ<em>G</em><sub>inject</sub>), and regeneration driving force of a dye (Δ<em>G</em><sub>regenerate</sub>). Results show that the theoretically calculated values for assessing dye efficiency in a DSSC correlate with available experimental values. The UV–visible spectra of [Fe(L<sup>n</sup>)<sub>2</sub>]<sup>2+</sup> exhibited a peak above 500 nm (<em>λ</em><sub>max</sub>) in the visible region, attributed to the ligand-to-metal charge transfer band (LMCT) in literature, and a significant absorbance peak at approximately 300 nm (<em>λ</em><sub>A,max</sub>) in the UV region. The M06-D3/CEP-121G method replicated all reported <em>λ</em><sub>max</sub> and <em>λ</em><sub>A,max</sub> values with a mean absolute deviation (MAD) of 21 and 18 nm, respectively. Our findings underscore the connections between electronic modifications and absorption spectra, emphasizing their impact on the light-harvesting capabilities and overall performance of DSSCs. This research contributes to the advancement of fundamental principles governing the design and optimization of novel photovoltaic materials, facilitating the development of more efficient and sustainable solar energy technologies.</p></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1093326324000536/pdfft?md5=e57be4ef77e0e23c32eb385ec4657676&pid=1-s2.0-S1093326324000536-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324000536\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324000536","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

通过利用密度泛函理论(DFT)进行综合计算分析,我们阐明了改性铁(II)-三吡啶衍生物的电子结构和光谱特性,旨在提高染料敏化太阳能电池(DSSC)的效率。我们以乙腈(MeCN)为溶剂,利用 TDDFT 对 19 种铁(II)-三吡啶衍生物及相关化合物进行了优化,评估了它们作为 DSSC 染料的潜力。通过对含有取代的特吡啶和相关配体 L1-L19 的 19 种[Fe(Ln)2]2+ 复合物的优化几何结构进行计算,我们确定了它们的波长(λ,单位为 nm)、跃迁能(E,单位为 eV)、振荡器强度(f)、跃迁类型、激发态寿命 (τ)、采光效率 (LHE)、前沿轨道特性及其能量 (ELUMO/EHOMO)、自然过渡轨道 (NTO)、染料的注入驱动力 (ΔGinject) 和染料的再生驱动力 (ΔGregenerate)。结果表明,用于评估 DSSC 中染料效率的理论计算值与现有实验值相符。[Fe(Ln)2]2+的紫外-可见光谱在可见光区显示出一个高于 500 纳米的峰值(λmax),这在文献中被认为是配体-金属电荷转移带(LMCT),在紫外区约 300 纳米处有一个显著的吸光峰值(λA,max)。M06-D3/CEP-121G 方法复制了所有报道的 λmax 和 λA,max 值,平均绝对偏差 (MAD) 分别为 21 纳米和 18 纳米。我们的研究结果凸显了电子修饰与吸收光谱之间的联系,强调了它们对 DSSC 光收集能力和整体性能的影响。这项研究有助于推进新型光伏材料设计和优化的基本原则,促进更高效和可持续太阳能技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DFT study of the spectroscopic behaviour of different iron(II)-terpyridine derivatives with application in DSSCs

Through a comprehensive computational analysis utilizing Density Functional Theory (DFT), we clarify the electronic structure and spectroscopic properties of modified iron(II)-terpyridine derivatives, with the aim of enhancing the efficiency of Dye-Sensitized Solar Cells (DSSCs). We optimized a series of nineteen iron(II)-terpyridine derivatives and related compounds in acetonitrile (MeCN) as the solvent using TDDFT, evaluating their potential as dyes for DSSCs. From the conducted computations on the optimized geometries of the nineteen [Fe(Ln)2]2+ complexes, containing substituted terpyridine and related ligands L1-L19, we determined the wavelengths (λ in nm), transition energy (E in eV), oscillator strength (f), type of transitions, excited state lifetime (τ), light harvesting efficiency (LHE), frontier orbital character and their energies (ELUMO/EHOMO), natural transition orbitals (NTOs), injection driving force of a dye (ΔGinject), and regeneration driving force of a dye (ΔGregenerate). Results show that the theoretically calculated values for assessing dye efficiency in a DSSC correlate with available experimental values. The UV–visible spectra of [Fe(Ln)2]2+ exhibited a peak above 500 nm (λmax) in the visible region, attributed to the ligand-to-metal charge transfer band (LMCT) in literature, and a significant absorbance peak at approximately 300 nm (λA,max) in the UV region. The M06-D3/CEP-121G method replicated all reported λmax and λA,max values with a mean absolute deviation (MAD) of 21 and 18 nm, respectively. Our findings underscore the connections between electronic modifications and absorption spectra, emphasizing their impact on the light-harvesting capabilities and overall performance of DSSCs. This research contributes to the advancement of fundamental principles governing the design and optimization of novel photovoltaic materials, facilitating the development of more efficient and sustainable solar energy technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
期刊最新文献
Editorial Board Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations How a mixture of microRNA-29a (miR-29a) and microRNA-144 (miR-144) cancer biomarkers interacts with a graphene quantum dot Unwinding DNA strands by single-walled carbon nanotubes: Molecular docking and MD simulation approach Insights into the binding recognition and computational design of IL-2 muteins with enhanced predicted binding affinity to the IL-2 receptor α
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1