产前/产后不同剂量的微波暴露会影响生长期大鼠的骨骼发育吗?

IF 1.9 4区 医学 Q3 PHYSIOLOGY Physiological research Pub Date : 2024-03-11 DOI:10.33549/physiolres.935148
A Karadayi, H Sarsmaz, A Çigel, B Engiz, N Ünal, S Ürkmez, S Gürgen
{"title":"产前/产后不同剂量的微波暴露会影响生长期大鼠的骨骼发育吗?","authors":"A Karadayi, H Sarsmaz, A Çigel, B Engiz, N Ünal, S Ürkmez, S Gürgen","doi":"10.33549/physiolres.935148","DOIUrl":null,"url":null,"abstract":"<p><p>Effects of pre/postnatal 2.45 GHz continuous wave (CW), Wireless-Fidelity (Wi-Fi) Microwave (MW) irradiation on bone have yet to be well defined. The present study used biochemical and histological methods to investigate effects on bone formation and resorption in the serum and the tibia bone tissues of growing rats exposed to MW irradiation during the pre/postnatal period. Six groups were created: one control group and five experimental groups subjected to low-level different electromagnetic fields (EMF) of growing male rats born from pregnant rats. During the experiment, the bodies of all five groups were exposed to 2.45 GHz CW-MW for one hour/day. EMF exposure started after fertilization in the experimental group. When the growing male rats were 45 days old in the postnatal period, the control and five experimental groups' growing male and maternal rats were sacrificed, and their tibia tissues were removed. Maternal rats were not included in the study. No differences were observed between the control and five experimental groups in Receptor Activator Nuclear factor-kB (RANK) biochemical results. In contrast, there was a statistically significant increase in soluble Receptor Activator of Nuclear factor-kB Ligand (sRANKL) and Osteoprotegerin (OPG) for 10 V/m and 15 V/m EMF values. Histologically, changes in the same groups supported biochemical results. These results indicate that pre/postnatal exposure to 2.45 GHz EMF at 10 and 15 V/m potentially affects bone development.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 1","pages":"157-172"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019611/pdf/","citationCount":"0","resultStr":"{\"title\":\"Does Microwave Exposure at Different Doses in the Pre/Postnatal Period Affect Growing Rat Bone Development?\",\"authors\":\"A Karadayi, H Sarsmaz, A Çigel, B Engiz, N Ünal, S Ürkmez, S Gürgen\",\"doi\":\"10.33549/physiolres.935148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effects of pre/postnatal 2.45 GHz continuous wave (CW), Wireless-Fidelity (Wi-Fi) Microwave (MW) irradiation on bone have yet to be well defined. The present study used biochemical and histological methods to investigate effects on bone formation and resorption in the serum and the tibia bone tissues of growing rats exposed to MW irradiation during the pre/postnatal period. Six groups were created: one control group and five experimental groups subjected to low-level different electromagnetic fields (EMF) of growing male rats born from pregnant rats. During the experiment, the bodies of all five groups were exposed to 2.45 GHz CW-MW for one hour/day. EMF exposure started after fertilization in the experimental group. When the growing male rats were 45 days old in the postnatal period, the control and five experimental groups' growing male and maternal rats were sacrificed, and their tibia tissues were removed. Maternal rats were not included in the study. No differences were observed between the control and five experimental groups in Receptor Activator Nuclear factor-kB (RANK) biochemical results. In contrast, there was a statistically significant increase in soluble Receptor Activator of Nuclear factor-kB Ligand (sRANKL) and Osteoprotegerin (OPG) for 10 V/m and 15 V/m EMF values. Histologically, changes in the same groups supported biochemical results. These results indicate that pre/postnatal exposure to 2.45 GHz EMF at 10 and 15 V/m potentially affects bone development.</p>\",\"PeriodicalId\":20235,\"journal\":{\"name\":\"Physiological research\",\"volume\":\"73 1\",\"pages\":\"157-172\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019611/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.33549/physiolres.935148\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.33549/physiolres.935148","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

产前/产后2.45 GHz连续波(CW)、无线保真(Wi-Fi)微波(MW)辐照对骨骼的影响尚未明确。本研究采用生化和组织学方法,研究了微波辐照对出生前/后生长期大鼠血清和胫骨骨组织中骨形成和骨吸收的影响。实验共分六组:一组为对照组,五组为实验组,实验对象均为孕鼠所生的生长期雄性大鼠,均受到低水平不同电磁场(EMF)的影响。在实验过程中,所有五组的身体每天暴露在 2.45 千兆赫的 CW-MW 中一小时。实验组在受精后开始接触电磁场。对照组和五个实验组的生长期雄鼠和母鼠在产后 45 天时被处死,并取出胫骨组织。母鼠不参与研究。对照组和五个实验组的受体活化因子核因子-kB(RANK)生化结果无差异。相反,在 10 伏/米和 15 伏/米电磁场值下,可溶性核因子-kB 受体活化因子配体(sRANKL)和骨蛋白激酶(OPG)在统计学上有显著增加。从组织学角度看,同组的变化支持生化结果。这些结果表明,产前/产后暴露于 10 伏/米和 15 伏/米的 2.45 千兆赫电磁场可能会影响骨骼发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Does Microwave Exposure at Different Doses in the Pre/Postnatal Period Affect Growing Rat Bone Development?

Effects of pre/postnatal 2.45 GHz continuous wave (CW), Wireless-Fidelity (Wi-Fi) Microwave (MW) irradiation on bone have yet to be well defined. The present study used biochemical and histological methods to investigate effects on bone formation and resorption in the serum and the tibia bone tissues of growing rats exposed to MW irradiation during the pre/postnatal period. Six groups were created: one control group and five experimental groups subjected to low-level different electromagnetic fields (EMF) of growing male rats born from pregnant rats. During the experiment, the bodies of all five groups were exposed to 2.45 GHz CW-MW for one hour/day. EMF exposure started after fertilization in the experimental group. When the growing male rats were 45 days old in the postnatal period, the control and five experimental groups' growing male and maternal rats were sacrificed, and their tibia tissues were removed. Maternal rats were not included in the study. No differences were observed between the control and five experimental groups in Receptor Activator Nuclear factor-kB (RANK) biochemical results. In contrast, there was a statistically significant increase in soluble Receptor Activator of Nuclear factor-kB Ligand (sRANKL) and Osteoprotegerin (OPG) for 10 V/m and 15 V/m EMF values. Histologically, changes in the same groups supported biochemical results. These results indicate that pre/postnatal exposure to 2.45 GHz EMF at 10 and 15 V/m potentially affects bone development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological research
Physiological research 医学-生理学
CiteScore
4.00
自引率
4.80%
发文量
108
审稿时长
3 months
期刊介绍: Physiological Research is a peer reviewed Open Access journal that publishes articles on normal and pathological physiology, biochemistry, biophysics, and pharmacology. Authors can submit original, previously unpublished research articles, review articles, rapid or short communications. Instructions for Authors - Respect the instructions carefully when submitting your manuscript. Submitted manuscripts or revised manuscripts that do not follow these Instructions will not be included into the peer-review process. The articles are available in full versions as pdf files beginning with volume 40, 1991. The journal publishes the online Ahead of Print /Pre-Press version of the articles that are searchable in Medline and can be cited.
期刊最新文献
Influence of Hypoxia on the Airway Epithelium. Long-Term Adverse Effects of Perinatal Hypoxia on the Adult Pulmonary Circulation Vary Between Males and Females in a Murine Model. Does Hypoxia Prompt Fetal Brain-Sparing in the Absence of Fetal Growth Restriction? Gut Microbiome and Pulmonary Arterial Hypertension - A Novel and Evolving Paradigm. Hypoxic Pulmonary Vasoconstriction: An Important Component of the Homeostatic Oxygen Sensing System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1