Ibironke J Akinola, Peter O Ubuane, Adeyemi O Dada, Joy O Chionuma, Taiwo O Kuku-Kuye, Folasade D Olalere
{"title":"孕产妇胰岛素抵抗与新生儿胰岛素抵抗和身体成分/体型的关系:一项针对撒哈拉以南非洲人口的前瞻性队列研究。","authors":"Ibironke J Akinola, Peter O Ubuane, Adeyemi O Dada, Joy O Chionuma, Taiwo O Kuku-Kuye, Folasade D Olalere","doi":"10.6065/apem.2346136.068","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We prospectively evaluated the association of the insulin resistance of third-trimester Nigerian pregnant women with their newborn infants' insulin resistance and birth size. Pregnancy-associated insulin resistance (IR), often assessed with homeostatic model assessment of IR (HOMA-IR), is associated, especially among women with gestational diabetes (GDM), with abnormal neonatal birth size and body composition, predisposing the baby to metabolic disorders like diabetes and obesity. The associations of maternal IR with neonatal IR, birth size and body composition are less studied in nondiabetic pregnant women, especially in sub-Saharan settings like Nigeria.</p><p><strong>Methods: </strong>We originally recruited 401 third trimester, nondiabetic pregnant women to a prospective cohort study, followed up until birth. Blood samples of mothers and babies were obtained, respectively, at recruitment and within 24 hours postbirth for fasting serum glucose (FSG) and insulin (FSI) assays, and HOMA-IR was calculated as [(FSI × FSG)/22.5)].</p><p><strong>Results: </strong>Complete data for 150 mother-baby dyads was analysed: the mothers, with a mean (standard deviation [SD]) age of 31.6 (4.5) years, had live births at a mean (SD) gestational age of 39.2 weeks. The proportions of infants with wasting, stunting, impaired fetal growth (either wasting or stunted), small-for-gestation-age, large-for-gestational-age, low birthweight, and macrosomia were 4.2% (95% confidence interval, 1.1-10.3), 19.7% (12.9-28.0), 23.1% (15.8-31.8), 10.1% (5.3-17.0), 12.6% (7.2-19.9), 0.8% (0.02-4.5), and 5.0% (1.8-10.5), respectively. Maternal HOMA-IR was not associated with neonatal HOMA-IR (p=0.837), birth weight (p=0.416) or body composition measured with weight-length ratio (p=0.524), but birth weight was independently predicted by maternal weight (p=0.006), body mass index (p=0.001), and parity (p=0.012).</p><p><strong>Conclusion: </strong>In this nondiabetic/non-GDM cohort, maternal HOMA-IR was not associated with neonatal IR, body size or body composition. Larger studies are required to confirm these findings, with addi-tional inclusion of mothers with hyperglycaemia for comparison.</p>","PeriodicalId":44915,"journal":{"name":"Annals of Pediatric Endocrinology & Metabolism","volume":"29 1","pages":"19-28"},"PeriodicalIF":2.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925788/pdf/","citationCount":"0","resultStr":"{\"title\":\"Association of maternal insulin resistance with neonatal insulin resistance and body composition/size: a prospective cohort study in a sub-Saharan African population.\",\"authors\":\"Ibironke J Akinola, Peter O Ubuane, Adeyemi O Dada, Joy O Chionuma, Taiwo O Kuku-Kuye, Folasade D Olalere\",\"doi\":\"10.6065/apem.2346136.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We prospectively evaluated the association of the insulin resistance of third-trimester Nigerian pregnant women with their newborn infants' insulin resistance and birth size. Pregnancy-associated insulin resistance (IR), often assessed with homeostatic model assessment of IR (HOMA-IR), is associated, especially among women with gestational diabetes (GDM), with abnormal neonatal birth size and body composition, predisposing the baby to metabolic disorders like diabetes and obesity. The associations of maternal IR with neonatal IR, birth size and body composition are less studied in nondiabetic pregnant women, especially in sub-Saharan settings like Nigeria.</p><p><strong>Methods: </strong>We originally recruited 401 third trimester, nondiabetic pregnant women to a prospective cohort study, followed up until birth. Blood samples of mothers and babies were obtained, respectively, at recruitment and within 24 hours postbirth for fasting serum glucose (FSG) and insulin (FSI) assays, and HOMA-IR was calculated as [(FSI × FSG)/22.5)].</p><p><strong>Results: </strong>Complete data for 150 mother-baby dyads was analysed: the mothers, with a mean (standard deviation [SD]) age of 31.6 (4.5) years, had live births at a mean (SD) gestational age of 39.2 weeks. The proportions of infants with wasting, stunting, impaired fetal growth (either wasting or stunted), small-for-gestation-age, large-for-gestational-age, low birthweight, and macrosomia were 4.2% (95% confidence interval, 1.1-10.3), 19.7% (12.9-28.0), 23.1% (15.8-31.8), 10.1% (5.3-17.0), 12.6% (7.2-19.9), 0.8% (0.02-4.5), and 5.0% (1.8-10.5), respectively. Maternal HOMA-IR was not associated with neonatal HOMA-IR (p=0.837), birth weight (p=0.416) or body composition measured with weight-length ratio (p=0.524), but birth weight was independently predicted by maternal weight (p=0.006), body mass index (p=0.001), and parity (p=0.012).</p><p><strong>Conclusion: </strong>In this nondiabetic/non-GDM cohort, maternal HOMA-IR was not associated with neonatal IR, body size or body composition. Larger studies are required to confirm these findings, with addi-tional inclusion of mothers with hyperglycaemia for comparison.</p>\",\"PeriodicalId\":44915,\"journal\":{\"name\":\"Annals of Pediatric Endocrinology & Metabolism\",\"volume\":\"29 1\",\"pages\":\"19-28\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925788/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pediatric Endocrinology & Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6065/apem.2346136.068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pediatric Endocrinology & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6065/apem.2346136.068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Association of maternal insulin resistance with neonatal insulin resistance and body composition/size: a prospective cohort study in a sub-Saharan African population.
Purpose: We prospectively evaluated the association of the insulin resistance of third-trimester Nigerian pregnant women with their newborn infants' insulin resistance and birth size. Pregnancy-associated insulin resistance (IR), often assessed with homeostatic model assessment of IR (HOMA-IR), is associated, especially among women with gestational diabetes (GDM), with abnormal neonatal birth size and body composition, predisposing the baby to metabolic disorders like diabetes and obesity. The associations of maternal IR with neonatal IR, birth size and body composition are less studied in nondiabetic pregnant women, especially in sub-Saharan settings like Nigeria.
Methods: We originally recruited 401 third trimester, nondiabetic pregnant women to a prospective cohort study, followed up until birth. Blood samples of mothers and babies were obtained, respectively, at recruitment and within 24 hours postbirth for fasting serum glucose (FSG) and insulin (FSI) assays, and HOMA-IR was calculated as [(FSI × FSG)/22.5)].
Results: Complete data for 150 mother-baby dyads was analysed: the mothers, with a mean (standard deviation [SD]) age of 31.6 (4.5) years, had live births at a mean (SD) gestational age of 39.2 weeks. The proportions of infants with wasting, stunting, impaired fetal growth (either wasting or stunted), small-for-gestation-age, large-for-gestational-age, low birthweight, and macrosomia were 4.2% (95% confidence interval, 1.1-10.3), 19.7% (12.9-28.0), 23.1% (15.8-31.8), 10.1% (5.3-17.0), 12.6% (7.2-19.9), 0.8% (0.02-4.5), and 5.0% (1.8-10.5), respectively. Maternal HOMA-IR was not associated with neonatal HOMA-IR (p=0.837), birth weight (p=0.416) or body composition measured with weight-length ratio (p=0.524), but birth weight was independently predicted by maternal weight (p=0.006), body mass index (p=0.001), and parity (p=0.012).
Conclusion: In this nondiabetic/non-GDM cohort, maternal HOMA-IR was not associated with neonatal IR, body size or body composition. Larger studies are required to confirm these findings, with addi-tional inclusion of mothers with hyperglycaemia for comparison.
期刊介绍:
The Annals of Pediatric Endocrinology & Metabolism Journal is the official publication of the Korean Society of Pediatric Endocrinology. Its formal abbreviated title is “Ann Pediatr Endocrinol Metab”. It is a peer-reviewed open access journal of medicine published in English. The journal was launched in 1996 under the title of ‘Journal of Korean Society of Pediatric Endocrinology’ until 2011 (pISSN 1226-2242). Since 2012, the title is now changed to ‘Annals of Pediatric Endocrinology & Metabolism’. The Journal is published four times per year on the last day of March, June, September, and December. It is widely distributed for free to members of the Korean Society of Pediatric Endocrinology, medical schools, libraries, and academic institutions. The journal is indexed/tracked/covered by web sites of PubMed Central, PubMed, Emerging Sources Citation Index (ESCI), Scopus, EBSCO, EMBASE, KoreaMed, KoMCI, KCI, Science Central, DOI/CrossRef, Directory of Open Access Journals(DOAJ), and Google Scholar. The aims of Annals of Pediatric Endocrinology & Metabolism are to contribute to the advancements in the fields of pediatric endocrinology & metabolism through the scientific reviews and interchange of all of pediatric endocrinology and metabolism. It aims to reflect the latest clinical, translational, and basic research trends from worldwide valuable achievements. In addition, genome research, epidemiology, public education and clinical practice guidelines in each country are welcomed for publication. The Journal particularly focuses on research conducted with Asian-Pacific children whose genetic and environmental backgrounds are different from those of the Western. Area of specific interest include the following : Growth, puberty, glucose metabolism including diabetes mellitus, obesity, nutrition, disorders of sexual development, pituitary, thyroid, parathyroid, adrenal cortex, bone or other endocrine and metabolic disorders from infancy through adolescence.