{"title":"用于表面适应性安装的热致动生物兼容柔性微型泵","authors":"Victor Bradley Bednar, Kenichi Takahata","doi":"10.1007/s10404-024-02708-0","DOIUrl":null,"url":null,"abstract":"<div><p>Pulsed thermal energy causes piecewise actuation of a nitinol cantilever providing the mechanical force required to evacuate a chamber constructed of parylene C. This proof-of-principle micropump demonstrates an alternative to typical evacuation and rectification methods utilized in most micropumps. The chamber and normally closed channels that serve as valves are all of parylene C construction, leading to the flexibility of the device. The nitinol cantilever functions as an actuator capable of yielding successive partial chamber evacuations until achieving complete evacuation. Piecewise shape recovery of the actuator was made viable by implementing a Peltier device, providing the means for supplying responsive and controlled thermal energy. Experiments delivered measurements of consecutive advancement of shape recovery using a laser displacement sensor while monitoring the temperature with fiber-optic sensors. The release of a saturated lithium chloride solution from the pump was monitored by observing conductivity changes in the experimental area. Theoretically predicting a release amount used calculations for the expected recovery of the actuator based on displacement characterization via a logistic curve fit against actuator temperature data. The measured release amounts correlated well with the theoretically predicted values made using the temperature values obtained near the device during the release. These works provide novel approaches to micropump fabrication and implementation and new strategies for predicting the recovery of shape memory alloys. The micropump concepts are viable in many fields, such as biomedical applications: in vivo drug delivery, organ-on-chip, and lab-on-chip devices, to name a few. Likewise, a simple prediction for nitinol recovery has vast potential.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A thermally actuated biocompatible flexible micropump for surface adaptable mounting\",\"authors\":\"Victor Bradley Bednar, Kenichi Takahata\",\"doi\":\"10.1007/s10404-024-02708-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pulsed thermal energy causes piecewise actuation of a nitinol cantilever providing the mechanical force required to evacuate a chamber constructed of parylene C. This proof-of-principle micropump demonstrates an alternative to typical evacuation and rectification methods utilized in most micropumps. The chamber and normally closed channels that serve as valves are all of parylene C construction, leading to the flexibility of the device. The nitinol cantilever functions as an actuator capable of yielding successive partial chamber evacuations until achieving complete evacuation. Piecewise shape recovery of the actuator was made viable by implementing a Peltier device, providing the means for supplying responsive and controlled thermal energy. Experiments delivered measurements of consecutive advancement of shape recovery using a laser displacement sensor while monitoring the temperature with fiber-optic sensors. The release of a saturated lithium chloride solution from the pump was monitored by observing conductivity changes in the experimental area. Theoretically predicting a release amount used calculations for the expected recovery of the actuator based on displacement characterization via a logistic curve fit against actuator temperature data. The measured release amounts correlated well with the theoretically predicted values made using the temperature values obtained near the device during the release. These works provide novel approaches to micropump fabrication and implementation and new strategies for predicting the recovery of shape memory alloys. The micropump concepts are viable in many fields, such as biomedical applications: in vivo drug delivery, organ-on-chip, and lab-on-chip devices, to name a few. Likewise, a simple prediction for nitinol recovery has vast potential.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"28 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02708-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02708-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
摘要
脉冲热能使镍钛诺悬臂片状启动,从而产生抽真空所需的机械力,将一个由对二甲苯 C 制成的腔室抽空。作为阀门的腔体和常闭通道全部采用对二甲苯 C 结构,从而提高了设备的灵活性。镍钛诺悬臂作为致动器,能够连续产生部分腔室排空,直至实现完全排空。通过采用珀尔帖(Peltier)装置,使推杆的片状形状恢复成为可能,从而提供了反应灵敏且可控的热能。实验使用激光位移传感器测量形状恢复的连续进展,同时使用光纤传感器监测温度。通过观察实验区域的电导率变化,监测泵中饱和氯化锂溶液的释放情况。在理论上预测释放量时,使用的是基于位移特征的推杆预期恢复计算方法,通过与推杆温度数据进行对数曲线拟合。测量到的释放量与利用释放过程中在装置附近获得的温度值进行的理论预测值相关性很好。这些工作为微型泵的制造和实施提供了新方法,也为预测形状记忆合金的恢复提供了新策略。微泵概念在许多领域都是可行的,例如生物医学应用:体内给药、芯片上的器官和芯片上的实验室设备等等。同样,镍钛诺恢复的简单预测也具有巨大潜力。
A thermally actuated biocompatible flexible micropump for surface adaptable mounting
Pulsed thermal energy causes piecewise actuation of a nitinol cantilever providing the mechanical force required to evacuate a chamber constructed of parylene C. This proof-of-principle micropump demonstrates an alternative to typical evacuation and rectification methods utilized in most micropumps. The chamber and normally closed channels that serve as valves are all of parylene C construction, leading to the flexibility of the device. The nitinol cantilever functions as an actuator capable of yielding successive partial chamber evacuations until achieving complete evacuation. Piecewise shape recovery of the actuator was made viable by implementing a Peltier device, providing the means for supplying responsive and controlled thermal energy. Experiments delivered measurements of consecutive advancement of shape recovery using a laser displacement sensor while monitoring the temperature with fiber-optic sensors. The release of a saturated lithium chloride solution from the pump was monitored by observing conductivity changes in the experimental area. Theoretically predicting a release amount used calculations for the expected recovery of the actuator based on displacement characterization via a logistic curve fit against actuator temperature data. The measured release amounts correlated well with the theoretically predicted values made using the temperature values obtained near the device during the release. These works provide novel approaches to micropump fabrication and implementation and new strategies for predicting the recovery of shape memory alloys. The micropump concepts are viable in many fields, such as biomedical applications: in vivo drug delivery, organ-on-chip, and lab-on-chip devices, to name a few. Likewise, a simple prediction for nitinol recovery has vast potential.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).