利用卫星遥感弥合内陆水量和水质之间的鸿沟:跨学科审查

WIREs Water Pub Date : 2024-03-10 DOI:10.1002/wat2.1725
Emily A. Ellis, George H. Allen, Ryan M. Riggs, Huilin Gao, Yao Li, Cayelan C. Carey
{"title":"利用卫星遥感弥合内陆水量和水质之间的鸿沟:跨学科审查","authors":"Emily A. Ellis, George H. Allen, Ryan M. Riggs, Huilin Gao, Yao Li, Cayelan C. Carey","doi":"10.1002/wat2.1725","DOIUrl":null,"url":null,"abstract":"The quantity and quality of surface water are inherently connected yet are overwhelmingly studied separately in the field of remote sensing. Remotely observable water quantity (e.g., water extent, water elevation, lake/reservoir volume, and river discharge) and water quality (e.g., color, turbidity, total suspended solids, chlorophyll <i>a</i>, colored dissolved organic matter, and temperature) parameters of inland waterbodies interact through a series of hydrological and biogeochemical processes. In this review, we analyzed trends in remote sensing publications to understand the prevalence of studies on the quantity versus quality of open-surface inland waterbodies (rivers, streams, lakes, and reservoirs) as well as identified opportunities for integrating both water quality and quantity sensing in future work. Our bibliometric analysis found that despite the increasing number of publications using remote sensing for inland waterbodies, few studies to date have used remote sensing tools or approaches to simultaneously study water quantity and quality. Ultimately, by providing insights into potential integration of the water quality and quantity studies, we aim to identify a pathway to advance the understanding of inland water dynamics and freshwater resources through remote sensing.","PeriodicalId":501223,"journal":{"name":"WIREs Water","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the divide between inland water quantity and quality with satellite remote sensing: An interdisciplinary review\",\"authors\":\"Emily A. Ellis, George H. Allen, Ryan M. Riggs, Huilin Gao, Yao Li, Cayelan C. Carey\",\"doi\":\"10.1002/wat2.1725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantity and quality of surface water are inherently connected yet are overwhelmingly studied separately in the field of remote sensing. Remotely observable water quantity (e.g., water extent, water elevation, lake/reservoir volume, and river discharge) and water quality (e.g., color, turbidity, total suspended solids, chlorophyll <i>a</i>, colored dissolved organic matter, and temperature) parameters of inland waterbodies interact through a series of hydrological and biogeochemical processes. In this review, we analyzed trends in remote sensing publications to understand the prevalence of studies on the quantity versus quality of open-surface inland waterbodies (rivers, streams, lakes, and reservoirs) as well as identified opportunities for integrating both water quality and quantity sensing in future work. Our bibliometric analysis found that despite the increasing number of publications using remote sensing for inland waterbodies, few studies to date have used remote sensing tools or approaches to simultaneously study water quantity and quality. Ultimately, by providing insights into potential integration of the water quality and quantity studies, we aim to identify a pathway to advance the understanding of inland water dynamics and freshwater resources through remote sensing.\",\"PeriodicalId\":501223,\"journal\":{\"name\":\"WIREs Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wat2.1725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wat2.1725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地表水的水量和水质本质上是相互关联的,但在遥感领域绝大多数情况下都是分开研究的。遥感观测到的内陆水体水量(如水域范围、水位、湖泊/水库水量和河流排水量)和水质(如颜色、浊度、总悬浮固体、叶绿素 a、有色溶解有机物和温度)参数通过一系列水文和生物地球化学过程相互作用。在这篇综述中,我们分析了遥感出版物的发展趋势,以了解有关开放地表内陆水体(河流、溪流、湖泊和水库)水量与水质的研究的普遍程度,并确定了在未来工作中将水质和水量传感相结合的机会。我们的文献计量分析发现,尽管利用遥感技术研究内陆水体的出版物越来越多,但迄今为止很少有研究利用遥感工具或方法同时研究水量和水质。最终,通过对水质和水量研究的潜在整合提供见解,我们旨在确定一条通过遥感促进对内陆水体动态和淡水资源了解的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridging the divide between inland water quantity and quality with satellite remote sensing: An interdisciplinary review
The quantity and quality of surface water are inherently connected yet are overwhelmingly studied separately in the field of remote sensing. Remotely observable water quantity (e.g., water extent, water elevation, lake/reservoir volume, and river discharge) and water quality (e.g., color, turbidity, total suspended solids, chlorophyll a, colored dissolved organic matter, and temperature) parameters of inland waterbodies interact through a series of hydrological and biogeochemical processes. In this review, we analyzed trends in remote sensing publications to understand the prevalence of studies on the quantity versus quality of open-surface inland waterbodies (rivers, streams, lakes, and reservoirs) as well as identified opportunities for integrating both water quality and quantity sensing in future work. Our bibliometric analysis found that despite the increasing number of publications using remote sensing for inland waterbodies, few studies to date have used remote sensing tools or approaches to simultaneously study water quantity and quality. Ultimately, by providing insights into potential integration of the water quality and quantity studies, we aim to identify a pathway to advance the understanding of inland water dynamics and freshwater resources through remote sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anishinaabek responsibilities and relationships are demonstrated in N'bi (Water) Declarations Food for fish: Challenges and opportunities for quantifying foodscapes in river networks Immunity through technification? A critical review of water governance discourses in Tunisia Optimization methods in water system operation Water on the mind: Mapping behavioral and psychological research on water security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1