合成特权信息加强医学图像表征学习

Lucas Farndale, Chris Walsh, Robert Insall, Ke Yuan
{"title":"合成特权信息加强医学图像表征学习","authors":"Lucas Farndale, Chris Walsh, Robert Insall, Ke Yuan","doi":"arxiv-2403.05220","DOIUrl":null,"url":null,"abstract":"Multimodal self-supervised representation learning has consistently proven to\nbe a highly effective method in medical image analysis, offering strong task\nperformance and producing biologically informed insights. However, these\nmethods heavily rely on large, paired datasets, which is prohibitive for their\nuse in scenarios where paired data does not exist, or there is only a small\namount available. In contrast, image generation methods can work well on very\nsmall datasets, and can find mappings between unpaired datasets, meaning an\neffectively unlimited amount of paired synthetic data can be generated. In this\nwork, we demonstrate that representation learning can be significantly improved\nby synthetically generating paired information, both compared to training on\neither single-modality (up to 4.4x error reduction) or authentic multi-modal\npaired datasets (up to 5.6x error reduction).","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Privileged Information Enhances Medical Image Representation Learning\",\"authors\":\"Lucas Farndale, Chris Walsh, Robert Insall, Ke Yuan\",\"doi\":\"arxiv-2403.05220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal self-supervised representation learning has consistently proven to\\nbe a highly effective method in medical image analysis, offering strong task\\nperformance and producing biologically informed insights. However, these\\nmethods heavily rely on large, paired datasets, which is prohibitive for their\\nuse in scenarios where paired data does not exist, or there is only a small\\namount available. In contrast, image generation methods can work well on very\\nsmall datasets, and can find mappings between unpaired datasets, meaning an\\neffectively unlimited amount of paired synthetic data can be generated. In this\\nwork, we demonstrate that representation learning can be significantly improved\\nby synthetically generating paired information, both compared to training on\\neither single-modality (up to 4.4x error reduction) or authentic multi-modal\\npaired datasets (up to 5.6x error reduction).\",\"PeriodicalId\":501572,\"journal\":{\"name\":\"arXiv - QuanBio - Tissues and Organs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Tissues and Organs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.05220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.05220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模态自监督表征学习一直被证明是医学图像分析中非常有效的方法,它能提供强大的任务性能,并产生生物学意义上的见解。然而,这些方法在很大程度上依赖于大型配对数据集,在不存在配对数据或只有少量可用数据的情况下,使用这些方法是非常困难的。相比之下,图像生成方法可以在非常小的数据集上很好地工作,并且可以找到未配对数据集之间的映射,这意味着实际上可以生成无限量的配对合成数据。在这项工作中,我们证明了通过合成生成配对信息可以显著改善表征学习,无论是与单模态训练相比(误差减少高达 4.4 倍),还是与真实的多模态配对数据集相比(误差减少高达 5.6 倍),都是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthetic Privileged Information Enhances Medical Image Representation Learning
Multimodal self-supervised representation learning has consistently proven to be a highly effective method in medical image analysis, offering strong task performance and producing biologically informed insights. However, these methods heavily rely on large, paired datasets, which is prohibitive for their use in scenarios where paired data does not exist, or there is only a small amount available. In contrast, image generation methods can work well on very small datasets, and can find mappings between unpaired datasets, meaning an effectively unlimited amount of paired synthetic data can be generated. In this work, we demonstrate that representation learning can be significantly improved by synthetically generating paired information, both compared to training on either single-modality (up to 4.4x error reduction) or authentic multi-modal paired datasets (up to 5.6x error reduction).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1