{"title":"微热场流分馏中的聚焦机制","authors":"Josef Janča","doi":"10.1007/s10337-024-04316-0","DOIUrl":null,"url":null,"abstract":"<div><p>Progress in theory of separation mechanisms controlling the Micro-Thermal Field-Flow Fractionation of the macromolecular and particulate species inspired the development of the experimental methodology and instrumental techniques. Three really functioning separation mechanisms are polarization, steric and focusing. However, steric mechanism is rather exceptionally operative for the separation of large particles at low flow rates of the carrier liquid. On the other hand, two <i>modus operandi</i> taking advantage of focusing mechanism emerging at high flow rates and, consequently, resulting in very rapid separations are elaborated. One exploits the action of the lift force and the other one makes use of the kinetic energy generated by the collisions among the particles in bi-disperse suspension of the particulate species. Surface properties and their topographical heterogeneity influence the migration of particulate species exposed to the force of thermal diffusion. The shape of the spherical versus non-spherical particles distinguishes their behavior when exposed to thermal diffusion and to hydrodynamic stress. It was theoretically calculated that the separations of the particles, based on the mentioned differences, are possible by Focusing Micro-Thermal Field-Flow Fractionation. Since our earlier theoretical models were not developed in sufficient details, some of the previous results are corrected by the present paper. The theoretical conclusions are supported by preceding real separations.</p></div>","PeriodicalId":518,"journal":{"name":"Chromatographia","volume":"87 4","pages":"259 - 268"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Focusing Mechanisms in Micro-thermal Field-Flow Fractionation\",\"authors\":\"Josef Janča\",\"doi\":\"10.1007/s10337-024-04316-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Progress in theory of separation mechanisms controlling the Micro-Thermal Field-Flow Fractionation of the macromolecular and particulate species inspired the development of the experimental methodology and instrumental techniques. Three really functioning separation mechanisms are polarization, steric and focusing. However, steric mechanism is rather exceptionally operative for the separation of large particles at low flow rates of the carrier liquid. On the other hand, two <i>modus operandi</i> taking advantage of focusing mechanism emerging at high flow rates and, consequently, resulting in very rapid separations are elaborated. One exploits the action of the lift force and the other one makes use of the kinetic energy generated by the collisions among the particles in bi-disperse suspension of the particulate species. Surface properties and their topographical heterogeneity influence the migration of particulate species exposed to the force of thermal diffusion. The shape of the spherical versus non-spherical particles distinguishes their behavior when exposed to thermal diffusion and to hydrodynamic stress. It was theoretically calculated that the separations of the particles, based on the mentioned differences, are possible by Focusing Micro-Thermal Field-Flow Fractionation. Since our earlier theoretical models were not developed in sufficient details, some of the previous results are corrected by the present paper. The theoretical conclusions are supported by preceding real separations.</p></div>\",\"PeriodicalId\":518,\"journal\":{\"name\":\"Chromatographia\",\"volume\":\"87 4\",\"pages\":\"259 - 268\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromatographia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10337-024-04316-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromatographia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10337-024-04316-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Focusing Mechanisms in Micro-thermal Field-Flow Fractionation
Progress in theory of separation mechanisms controlling the Micro-Thermal Field-Flow Fractionation of the macromolecular and particulate species inspired the development of the experimental methodology and instrumental techniques. Three really functioning separation mechanisms are polarization, steric and focusing. However, steric mechanism is rather exceptionally operative for the separation of large particles at low flow rates of the carrier liquid. On the other hand, two modus operandi taking advantage of focusing mechanism emerging at high flow rates and, consequently, resulting in very rapid separations are elaborated. One exploits the action of the lift force and the other one makes use of the kinetic energy generated by the collisions among the particles in bi-disperse suspension of the particulate species. Surface properties and their topographical heterogeneity influence the migration of particulate species exposed to the force of thermal diffusion. The shape of the spherical versus non-spherical particles distinguishes their behavior when exposed to thermal diffusion and to hydrodynamic stress. It was theoretically calculated that the separations of the particles, based on the mentioned differences, are possible by Focusing Micro-Thermal Field-Flow Fractionation. Since our earlier theoretical models were not developed in sufficient details, some of the previous results are corrected by the present paper. The theoretical conclusions are supported by preceding real separations.
期刊介绍:
Separation sciences, in all their various forms such as chromatography, field-flow fractionation, and electrophoresis, provide some of the most powerful techniques in analytical chemistry and are applied within a number of important application areas, including archaeology, biotechnology, clinical, environmental, food, medical, petroleum, pharmaceutical, polymer and biopolymer research. Beyond serving analytical purposes, separation techniques are also used for preparative and process-scale applications. The scope and power of separation sciences is significantly extended by combination with spectroscopic detection methods (e.g., laser-based approaches, nuclear-magnetic resonance, Raman, chemiluminescence) and particularly, mass spectrometry, to create hyphenated techniques. In addition to exciting new developments in chromatography, such as ultra high-pressure systems, multidimensional separations, and high-temperature approaches, there have also been great advances in hybrid methods combining chromatography and electro-based separations, especially on the micro- and nanoscale. Integrated biological procedures (e.g., enzymatic, immunological, receptor-based assays) can also be part of the overall analytical process.