甲虫图谱:红面粉甲虫(Tribolium castaneum)的个体发育和组织特异性转录组图集

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Biology Pub Date : 2024-09-01 DOI:10.1016/j.jmb.2024.168520
{"title":"甲虫图谱:红面粉甲虫(Tribolium castaneum)的个体发育和组织特异性转录组图集","authors":"","doi":"10.1016/j.jmb.2024.168520","DOIUrl":null,"url":null,"abstract":"<div><p>The red flour beetle <em>Tribolium castaneum</em> has emerged as a powerful model in insect functional genomics. However, a major limitation in the field is the lack of a detailed spatio-temporal view of the genetic signatures underpinning the function of distinct tissues and life stages. Here, we present an ontogenetic and tissue-specific web-based resource for <em>Tribolium</em> transcriptomics: BeetleAtlas (<span><span>https://www.beetleatlas.org</span><svg><path></path></svg></span>). This web application provides access to a database populated with quantitative expression data for nine adult and seven larval tissues, as well as for four embryonic stages of <em>Tribolium</em>. BeetleAtlas allows one to search for individual <em>Tribolium</em> genes to obtain values of both total gene expression and enrichment in different tissues, together with data for individual isoforms. To facilitate cross-species studies, one can also use <em>Drosophila melanogaster</em> gene identifiers to search for related <em>Tribolium</em> genes. For retrieved genes there are options to identify and display the tissue expression of related <em>Tribolium</em> genes or homologous <em>Drosophila</em> genes. Five additional search modes are available to find genes conforming to any of the following criteria: exhibiting high expression in a particular tissue; showing significant differences in expression between larva and adult; having a peak of expression at a specific stage of embryonic development; belonging to a particular functional category; and displaying a pattern of tissue expression similar to that of a query gene. We illustrate how the different feaures of BeetleAtlas can be used to illuminate our understanding of the genetic mechanisms underpinning the biology of what is the largest animal group on earth.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168520"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001074/pdfft?md5=d43ca113651c6eb642cd449e3aad0011&pid=1-s2.0-S0022283624001074-main.pdf","citationCount":"0","resultStr":"{\"title\":\"BeetleAtlas: An Ontogenetic and Tissue-specific Transcriptomic Atlas of the Red Flour Beetle Tribolium castaneum\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The red flour beetle <em>Tribolium castaneum</em> has emerged as a powerful model in insect functional genomics. However, a major limitation in the field is the lack of a detailed spatio-temporal view of the genetic signatures underpinning the function of distinct tissues and life stages. Here, we present an ontogenetic and tissue-specific web-based resource for <em>Tribolium</em> transcriptomics: BeetleAtlas (<span><span>https://www.beetleatlas.org</span><svg><path></path></svg></span>). This web application provides access to a database populated with quantitative expression data for nine adult and seven larval tissues, as well as for four embryonic stages of <em>Tribolium</em>. BeetleAtlas allows one to search for individual <em>Tribolium</em> genes to obtain values of both total gene expression and enrichment in different tissues, together with data for individual isoforms. To facilitate cross-species studies, one can also use <em>Drosophila melanogaster</em> gene identifiers to search for related <em>Tribolium</em> genes. For retrieved genes there are options to identify and display the tissue expression of related <em>Tribolium</em> genes or homologous <em>Drosophila</em> genes. Five additional search modes are available to find genes conforming to any of the following criteria: exhibiting high expression in a particular tissue; showing significant differences in expression between larva and adult; having a peak of expression at a specific stage of embryonic development; belonging to a particular functional category; and displaying a pattern of tissue expression similar to that of a query gene. We illustrate how the different feaures of BeetleAtlas can be used to illuminate our understanding of the genetic mechanisms underpinning the biology of what is the largest animal group on earth.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"436 17\",\"pages\":\"Article 168520\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001074/pdfft?md5=d43ca113651c6eb642cd449e3aad0011&pid=1-s2.0-S0022283624001074-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001074\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624001074","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

红粉甲虫(Tribolium castaneum)已成为昆虫功能基因组学的强大模型。然而,该领域的一个主要局限是缺乏对不同组织和生命阶段功能的遗传特征的详细时空观。在这里,我们介绍了一种基于本体和组织特异性的 Tribolium 转录组学网络资源:BeetleAtlas (https://www.beetleatlas.org)。该网络应用程序提供了一个数据库,其中包含蒺藜九个成体和七个幼体组织以及四个胚胎阶段的定量表达数据。BeetleAtlas 允许搜索单个蒺藜基因,以获得不同组织中的总基因表达值和富集度,以及单个同工酶的数据。为便于跨物种研究,还可以使用黑腹果蝇基因标识符搜索相关的蒺藜基因。对于检索到的基因,可选择识别和显示相关铁蒺藜基因或同源果蝇基因的组织表达。另外还有五种搜索模式可用于查找符合以下任何标准的基因:在特定组织中表现出高表达;在幼虫和成虫之间表现出显著的表达差异;在胚胎发育的特定阶段达到表达峰值;属于特定的功能类别;表现出与查询基因相似的组织表达模式。我们将说明如何利用 BeetleAtlas 的不同功能来阐明我们对地球上最大动物群体生物学遗传机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BeetleAtlas: An Ontogenetic and Tissue-specific Transcriptomic Atlas of the Red Flour Beetle Tribolium castaneum

The red flour beetle Tribolium castaneum has emerged as a powerful model in insect functional genomics. However, a major limitation in the field is the lack of a detailed spatio-temporal view of the genetic signatures underpinning the function of distinct tissues and life stages. Here, we present an ontogenetic and tissue-specific web-based resource for Tribolium transcriptomics: BeetleAtlas (https://www.beetleatlas.org). This web application provides access to a database populated with quantitative expression data for nine adult and seven larval tissues, as well as for four embryonic stages of Tribolium. BeetleAtlas allows one to search for individual Tribolium genes to obtain values of both total gene expression and enrichment in different tissues, together with data for individual isoforms. To facilitate cross-species studies, one can also use Drosophila melanogaster gene identifiers to search for related Tribolium genes. For retrieved genes there are options to identify and display the tissue expression of related Tribolium genes or homologous Drosophila genes. Five additional search modes are available to find genes conforming to any of the following criteria: exhibiting high expression in a particular tissue; showing significant differences in expression between larva and adult; having a peak of expression at a specific stage of embryonic development; belonging to a particular functional category; and displaying a pattern of tissue expression similar to that of a query gene. We illustrate how the different feaures of BeetleAtlas can be used to illuminate our understanding of the genetic mechanisms underpinning the biology of what is the largest animal group on earth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
期刊最新文献
Editorial Board Outside Front Cover Assembly of the human multi-tRNA synthetase complex through leucine zipper motifs. Corrigendum to “The Role of ATG9 Vesicles in Autophagosome Biogenesis” [J. Mol. Biol. 436(15) (2024) 168489] Structural studies on Mycobacterial NudC reveal a class of zinc independent NADH pyrophosphatase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1