甲醇-空气混合物的层流火焰速度测量和燃烧机理优化

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL International Journal of Chemical Kinetics Pub Date : 2024-03-11 DOI:10.1002/kin.21717
Lei Wang, Zixing Zhang, Zheng Zhong
{"title":"甲醇-空气混合物的层流火焰速度测量和燃烧机理优化","authors":"Lei Wang,&nbsp;Zixing Zhang,&nbsp;Zheng Zhong","doi":"10.1002/kin.21717","DOIUrl":null,"url":null,"abstract":"<p>Laminar flame speeds of methanol/air mixtures at 338–398 K are measured by the heat flux method, extending the range of equivalence ratio up to 2.1. And a new optimized methanol mechanism with 94 reactions is proposed by using the particle swarm algorithm, adjusting 20 Arrhenius pre-exponential factors in their uncertainty domains. The optimized model is compared with eight methanol combustion mechanisms and experimental data published in recent years, covering a wide range of initial temperatures (298–1537 K), pressures (0.04–50 atm) and equivalence ratios (0.5–2.1). The results show that the optimized mechanism not only improves the accuracy of ignition delay time with rapid compression machine at low temperature but also moderately improve the description of laminar flame speed in lean and stoichiometric conditions. Meanwhile, the optimized model significantly enhances the prediction accuracy of CH<sub>3</sub> and CH<sub>2</sub>O radical, and perfectly captures the evolution trend of HCO radical in laminar flat flame. Overall, the optimized mechanism provides the best overall description of the currently available measurements, leading to more accurate and comprehensive prediction of ignition delay time, laminar flame speed and species concentration.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laminar flame speed measurement and combustion mechanism optimization of methanol–air mixtures\",\"authors\":\"Lei Wang,&nbsp;Zixing Zhang,&nbsp;Zheng Zhong\",\"doi\":\"10.1002/kin.21717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laminar flame speeds of methanol/air mixtures at 338–398 K are measured by the heat flux method, extending the range of equivalence ratio up to 2.1. And a new optimized methanol mechanism with 94 reactions is proposed by using the particle swarm algorithm, adjusting 20 Arrhenius pre-exponential factors in their uncertainty domains. The optimized model is compared with eight methanol combustion mechanisms and experimental data published in recent years, covering a wide range of initial temperatures (298–1537 K), pressures (0.04–50 atm) and equivalence ratios (0.5–2.1). The results show that the optimized mechanism not only improves the accuracy of ignition delay time with rapid compression machine at low temperature but also moderately improve the description of laminar flame speed in lean and stoichiometric conditions. Meanwhile, the optimized model significantly enhances the prediction accuracy of CH<sub>3</sub> and CH<sub>2</sub>O radical, and perfectly captures the evolution trend of HCO radical in laminar flat flame. Overall, the optimized mechanism provides the best overall description of the currently available measurements, leading to more accurate and comprehensive prediction of ignition delay time, laminar flame speed and species concentration.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21717\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21717","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过热通量法测量了甲醇/空气混合物在 338-398 K 下的层燃速度,将等效比范围扩大到 2.1。利用粒子群算法,在不确定域中调整 20 个阿伦尼乌斯前指数因子,提出了包含 94 个反应的新优化甲醇机理。将优化后的模型与近年来发表的八种甲醇燃烧机理和实验数据进行了比较,涵盖了较宽的初始温度(298-1537 K)、压力(0.04-50 atm)和当量比(0.5-2.1)范围。结果表明,优化机制不仅提高了低温快速压缩机点火延迟时间的准确性,还适度改善了贫油和化学计量条件下层流火焰速度的描述。同时,优化模型显著提高了 CH3 和 CH2O 自由基的预测精度,并完美捕捉了层状平焰中 HCO 自由基的演化趋势。总之,优化后的机理能够最好地全面描述现有的测量结果,从而更准确、更全面地预测点火延迟时间、层流火焰速度和物种浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laminar flame speed measurement and combustion mechanism optimization of methanol–air mixtures

Laminar flame speeds of methanol/air mixtures at 338–398 K are measured by the heat flux method, extending the range of equivalence ratio up to 2.1. And a new optimized methanol mechanism with 94 reactions is proposed by using the particle swarm algorithm, adjusting 20 Arrhenius pre-exponential factors in their uncertainty domains. The optimized model is compared with eight methanol combustion mechanisms and experimental data published in recent years, covering a wide range of initial temperatures (298–1537 K), pressures (0.04–50 atm) and equivalence ratios (0.5–2.1). The results show that the optimized mechanism not only improves the accuracy of ignition delay time with rapid compression machine at low temperature but also moderately improve the description of laminar flame speed in lean and stoichiometric conditions. Meanwhile, the optimized model significantly enhances the prediction accuracy of CH3 and CH2O radical, and perfectly captures the evolution trend of HCO radical in laminar flat flame. Overall, the optimized mechanism provides the best overall description of the currently available measurements, leading to more accurate and comprehensive prediction of ignition delay time, laminar flame speed and species concentration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
期刊最新文献
Issue Information Force training neural network potential energy surface models Issue Information Folic acid as a green inhibitor for corrosion protection of Q235 carbon steel in 3.5 wt% NaCl solution Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1