FTO介导的去甲基化诱导LY6K上调,通过CAV-1介导的ERK1/2信号激活促进口腔鳞状细胞癌的肿瘤发生和转移。

IF 2.5 4区 生物学 Q3 CELL BIOLOGY Histology and histopathology Pub Date : 2024-10-01 Epub Date: 2024-02-27 DOI:10.14670/HH-18-725
Chen Xu, Rujuan Gong, Haibing Yang
{"title":"FTO介导的去甲基化诱导LY6K上调,通过CAV-1介导的ERK1/2信号激活促进口腔鳞状细胞癌的肿瘤发生和转移。","authors":"Chen Xu, Rujuan Gong, Haibing Yang","doi":"10.14670/HH-18-725","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphocyte antigen 6 complex locus K (LY6K) has been demonstrated to play a significant role in cancers and identified as a therapeutic biomarker for head and neck squamous cell carcinoma. However, the role of LY6K in oral squamous cell carcinoma (OSCC) has not been explored. The current study discovered that LY6K was aberrantly upregulated in OSCC cell lines and tissues and that high LY6K expression significantly correlated with poorer survival of OSCC patients. Through stable knockdown of LY6K, we found that the growth, colony formation, migration, and invasion of OSCC cells were substantially suppressed. In addition, tumor growth and lung metastasis <i>in vivo</i> were effectively inhibited by LY6K depletion. Mechanically, LY6K binds with CAV-1 and activates CAV-1-mediated MAPK/ERK signaling to exert its oncogenic effects on OSCC. In addition, LY6K expression in OSCC was discovered to be regulated by FTO-mediated RNA N6-methyladenosine (m<sup>6</sup>A) modification in an IGF2BP1-dependent manner. Generally, LY6K expression was upregulated by FTO-mediated demethylation in OSCC, which promoted the tumorigenesis and metastasis of OSCC via activating the CAV-1-mediated ERK1/2 signaling pathway.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upregulation of LY6K induced by FTO-mediated demethylation promotes the tumorigenesis and metastasis of oral squamous cell carcinoma via CAV-1-mediated ERK1/2 signaling activation.\",\"authors\":\"Chen Xu, Rujuan Gong, Haibing Yang\",\"doi\":\"10.14670/HH-18-725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lymphocyte antigen 6 complex locus K (LY6K) has been demonstrated to play a significant role in cancers and identified as a therapeutic biomarker for head and neck squamous cell carcinoma. However, the role of LY6K in oral squamous cell carcinoma (OSCC) has not been explored. The current study discovered that LY6K was aberrantly upregulated in OSCC cell lines and tissues and that high LY6K expression significantly correlated with poorer survival of OSCC patients. Through stable knockdown of LY6K, we found that the growth, colony formation, migration, and invasion of OSCC cells were substantially suppressed. In addition, tumor growth and lung metastasis <i>in vivo</i> were effectively inhibited by LY6K depletion. Mechanically, LY6K binds with CAV-1 and activates CAV-1-mediated MAPK/ERK signaling to exert its oncogenic effects on OSCC. In addition, LY6K expression in OSCC was discovered to be regulated by FTO-mediated RNA N6-methyladenosine (m<sup>6</sup>A) modification in an IGF2BP1-dependent manner. Generally, LY6K expression was upregulated by FTO-mediated demethylation in OSCC, which promoted the tumorigenesis and metastasis of OSCC via activating the CAV-1-mediated ERK1/2 signaling pathway.</p>\",\"PeriodicalId\":13164,\"journal\":{\"name\":\"Histology and histopathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histology and histopathology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.14670/HH-18-725\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-725","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

淋巴细胞抗原 6 复合位点 K(LY6K)已被证实在癌症中发挥重要作用,并被确定为头颈部鳞状细胞癌的治疗生物标记物。然而,LY6K在口腔鳞状细胞癌(OSCC)中的作用尚未得到探讨。目前的研究发现,LY6K在OSCC细胞系和组织中异常上调,LY6K的高表达与OSCC患者较差的生存率显著相关。通过稳定敲除 LY6K,我们发现 OSCC 细胞的生长、集落形成、迁移和侵袭受到了极大的抑制。此外,体内的肿瘤生长和肺转移也因 LY6K 的去除而受到有效抑制。从机理上讲,LY6K 与 CAV-1 结合并激活 CAV-1 介导的 MAPK/ERK 信号,从而对 OSCC 发挥致癌作用。此外,研究还发现,LY6K在OSCC中的表达受FTO介导的RNA N6-甲基腺苷(m6A)修饰的调控,其方式依赖于IGF2BP1。总体而言,FTO介导的去甲基化上调了LY6K在OSCC中的表达,LY6K通过激活CAV-1介导的ERK1/2信号通路促进了OSCC的肿瘤发生和转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Upregulation of LY6K induced by FTO-mediated demethylation promotes the tumorigenesis and metastasis of oral squamous cell carcinoma via CAV-1-mediated ERK1/2 signaling activation.

Lymphocyte antigen 6 complex locus K (LY6K) has been demonstrated to play a significant role in cancers and identified as a therapeutic biomarker for head and neck squamous cell carcinoma. However, the role of LY6K in oral squamous cell carcinoma (OSCC) has not been explored. The current study discovered that LY6K was aberrantly upregulated in OSCC cell lines and tissues and that high LY6K expression significantly correlated with poorer survival of OSCC patients. Through stable knockdown of LY6K, we found that the growth, colony formation, migration, and invasion of OSCC cells were substantially suppressed. In addition, tumor growth and lung metastasis in vivo were effectively inhibited by LY6K depletion. Mechanically, LY6K binds with CAV-1 and activates CAV-1-mediated MAPK/ERK signaling to exert its oncogenic effects on OSCC. In addition, LY6K expression in OSCC was discovered to be regulated by FTO-mediated RNA N6-methyladenosine (m6A) modification in an IGF2BP1-dependent manner. Generally, LY6K expression was upregulated by FTO-mediated demethylation in OSCC, which promoted the tumorigenesis and metastasis of OSCC via activating the CAV-1-mediated ERK1/2 signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Histology and histopathology
Histology and histopathology 生物-病理学
CiteScore
3.90
自引率
0.00%
发文量
232
审稿时长
2 months
期刊介绍: HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.
期刊最新文献
Correlation of NAT10 expression with clinical data and survival profiles in esophageal squamous cell carcinoma patients, and its impact on cell proliferation and apoptosis. Qualitative evaluations of reactive microglial heterogeneity in cultured porcine retina. S100A2 upregulates GLUT1 expression to promote glycolysis in the progression of nasopharyngeal carcinoma. Oridonin alleviates inflammation and endoplasmic reticulum stress in pediatric pneumonia via regulating the SIRT1-mediated Wnt/β-catenin signaling pathway. Brain endothelial cell activation and dysfunction associate with and contribute to the development of enlarged perivascular spaces and cerebral small vessel disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1