{"title":"我能从眼睛里看出来吗?针对可避免威胁的冻结样运动模式的研究。","authors":"Alma-Sophia Merscher, Matthias Gamer","doi":"10.1111/psyp.14567","DOIUrl":null,"url":null,"abstract":"<p><p>Freezing is one of the most extensively studied defensive behaviors in rodents. Both reduced body and gaze movements during anticipation of threat also occur in humans and have been discussed as translational indicators of freezing but their relationship remains unclear. We thus set out to elucidate body and eye movements and concomitant autonomic dynamics in anticipation of avoidable threat. Specifically, 50 participants viewed naturalistic pictures that were preceded by a colored fixation cross, signaling them whether to expect an inevitable (shock), no (safety), or a potential shock (flight) that could be avoided by a quick button press. Body sway, eye movements, the heart rate and skin conductance were recorded. We replicated previously described reductions in body sway, gaze dispersion, and the heart rate, and a skin conductance increase in flight trials. Stronger reductions in gaze but not in body sway predicted faster motor reactions on a trial-wise basis, highlighting their functional role in action preparation. We failed to find a trait-like relationship between body and gaze movements across participants, but their temporal profiles were positively related within individuals, suggesting that both metrics partly reflect the same construct. However, future research is desirable to assess these response patterns in naturalistic environments. A more ethological examination of different movement dynamics upon threat would not only warrant better comparability between rodent and human research but also help determine whether and how eye-tracking could be implemented as a proxy for fear-related movements in restricted brain imaging environments.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can I see it in the eyes? An investigation of freezing-like motion patterns in response to avoidable threat.\",\"authors\":\"Alma-Sophia Merscher, Matthias Gamer\",\"doi\":\"10.1111/psyp.14567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Freezing is one of the most extensively studied defensive behaviors in rodents. Both reduced body and gaze movements during anticipation of threat also occur in humans and have been discussed as translational indicators of freezing but their relationship remains unclear. We thus set out to elucidate body and eye movements and concomitant autonomic dynamics in anticipation of avoidable threat. Specifically, 50 participants viewed naturalistic pictures that were preceded by a colored fixation cross, signaling them whether to expect an inevitable (shock), no (safety), or a potential shock (flight) that could be avoided by a quick button press. Body sway, eye movements, the heart rate and skin conductance were recorded. We replicated previously described reductions in body sway, gaze dispersion, and the heart rate, and a skin conductance increase in flight trials. Stronger reductions in gaze but not in body sway predicted faster motor reactions on a trial-wise basis, highlighting their functional role in action preparation. We failed to find a trait-like relationship between body and gaze movements across participants, but their temporal profiles were positively related within individuals, suggesting that both metrics partly reflect the same construct. However, future research is desirable to assess these response patterns in naturalistic environments. A more ethological examination of different movement dynamics upon threat would not only warrant better comparability between rodent and human research but also help determine whether and how eye-tracking could be implemented as a proxy for fear-related movements in restricted brain imaging environments.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14567\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14567","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Can I see it in the eyes? An investigation of freezing-like motion patterns in response to avoidable threat.
Freezing is one of the most extensively studied defensive behaviors in rodents. Both reduced body and gaze movements during anticipation of threat also occur in humans and have been discussed as translational indicators of freezing but their relationship remains unclear. We thus set out to elucidate body and eye movements and concomitant autonomic dynamics in anticipation of avoidable threat. Specifically, 50 participants viewed naturalistic pictures that were preceded by a colored fixation cross, signaling them whether to expect an inevitable (shock), no (safety), or a potential shock (flight) that could be avoided by a quick button press. Body sway, eye movements, the heart rate and skin conductance were recorded. We replicated previously described reductions in body sway, gaze dispersion, and the heart rate, and a skin conductance increase in flight trials. Stronger reductions in gaze but not in body sway predicted faster motor reactions on a trial-wise basis, highlighting their functional role in action preparation. We failed to find a trait-like relationship between body and gaze movements across participants, but their temporal profiles were positively related within individuals, suggesting that both metrics partly reflect the same construct. However, future research is desirable to assess these response patterns in naturalistic environments. A more ethological examination of different movement dynamics upon threat would not only warrant better comparability between rodent and human research but also help determine whether and how eye-tracking could be implemented as a proxy for fear-related movements in restricted brain imaging environments.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.