Chih-Li Sung, Yi (Irene) Ji, Simon Mak, Wenjia Wang, Tao Tang
{"title":"堆叠设计:设计具有目标预测精度的多保真计算机实验","authors":"Chih-Li Sung, Yi (Irene) Ji, Simon Mak, Wenjia Wang, Tao Tang","doi":"10.1137/22m1532007","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 157-181, March 2024. <br/> Abstract. In an era where scientific experiments can be very costly, multifidelity emulators provide a useful tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of the multifidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance with some notion of confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking design approach that addresses both goals. A multilevel reproducing kernel Hilbert space (RKHS) interpolator is first introduced to build the emulator, under which our stacking design provides a sequential approach for designing multifidelity runs such that a desired prediction error of [math] is met under regularity assumptions. We then prove a novel cost complexity theorem that, under this multilevel interpolator, establishes a bound on the computation cost (for training data simulation) needed to achieve a prediction bound of [math]. This result provides novel insights on conditions under which the proposed multifidelity approach improves upon a conventional RKHS interpolator which relies on a single fidelity level. Finally, we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an application to finite element analysis.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stacking Designs: Designing Multifidelity Computer Experiments with Target Predictive Accuracy\",\"authors\":\"Chih-Li Sung, Yi (Irene) Ji, Simon Mak, Wenjia Wang, Tao Tang\",\"doi\":\"10.1137/22m1532007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 157-181, March 2024. <br/> Abstract. In an era where scientific experiments can be very costly, multifidelity emulators provide a useful tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of the multifidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance with some notion of confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking design approach that addresses both goals. A multilevel reproducing kernel Hilbert space (RKHS) interpolator is first introduced to build the emulator, under which our stacking design provides a sequential approach for designing multifidelity runs such that a desired prediction error of [math] is met under regularity assumptions. We then prove a novel cost complexity theorem that, under this multilevel interpolator, establishes a bound on the computation cost (for training data simulation) needed to achieve a prediction bound of [math]. This result provides novel insights on conditions under which the proposed multifidelity approach improves upon a conventional RKHS interpolator which relies on a single fidelity level. Finally, we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an application to finite element analysis.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1532007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1532007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Stacking Designs: Designing Multifidelity Computer Experiments with Target Predictive Accuracy
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 157-181, March 2024. Abstract. In an era where scientific experiments can be very costly, multifidelity emulators provide a useful tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of the multifidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance with some notion of confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking design approach that addresses both goals. A multilevel reproducing kernel Hilbert space (RKHS) interpolator is first introduced to build the emulator, under which our stacking design provides a sequential approach for designing multifidelity runs such that a desired prediction error of [math] is met under regularity assumptions. We then prove a novel cost complexity theorem that, under this multilevel interpolator, establishes a bound on the computation cost (for training data simulation) needed to achieve a prediction bound of [math]. This result provides novel insights on conditions under which the proposed multifidelity approach improves upon a conventional RKHS interpolator which relies on a single fidelity level. Finally, we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an application to finite element analysis.