{"title":"鼠尾草(丹参)通过调节自噬和氧化应激减轻曲沙酮诱导的大鼠心脏毒性。","authors":"Marwa Abdel-Samad Al-Gholam, Heba Moustafa Rasheed Hathout, Marwa Mohamed Safwat, Asmaa Saeed Essawy","doi":"10.5115/acb.23.247","DOIUrl":null,"url":null,"abstract":"<p><p>The antidepressant drug trazodone (TRZ) is commonly used for treating depression, anxiety, and insomnia, however, it causes cardiotoxicity, which is one of its limitations. The objective of this work was to investigate the impact of sage (<i>Salvia officinalis</i>) in rats against cardiotoxicity induced by TRZ and to investigate the mechanisms involved in its cardio-protective properties through autophagy and oxidative stress. Fifty male albino rats were split randomly into five experimental groups: control group, sage oil group (100 mg/kg), TRZ group (20 mg/kg), protective group, and curative group. Cardiac function biomarkers (aspartate aminotransferase [AST], creatine kinase-MB [CK-MB], and cardiac troponin T [cTnI]) were assessed in serum. Oxidative stress and inflammatory biomarkers in cardiac tissue (total antioxidant capacity, malondialdehyde, and tumor necrosis factor-α) were evaluated. Heart tissues were subjected to histological, immunohistochemical, and ultrastructural evaluations. DNA damage also evaluated. Significant rise in the levels of AST, CK-MB, and cTnI were observed with enhanced autophagy along with marked histopathological changes in the form of interrupted muscle fibers with wide interstitial spaces with areas of hemorrhage and extravasated blood and interstitial mononuclear cellular infiltration in TRZ group. DNA damage was also significantly increased in TRZ group. However, administration of sage in both protective and curative groups show marked improvement of the cardiac alterations. In conclusion, sage ameliorated the alterations in the heart induced by trazadone through modulation of autophagy and oxidative stress.</p>","PeriodicalId":7831,"journal":{"name":"Anatomy & Cell Biology","volume":" ","pages":"256-270"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184420/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sage (<i>Salvia officinalis</i>) alleviates trazadone induced rat cardiotoxicity mediated via modulation of autophagy and oxidative stress.\",\"authors\":\"Marwa Abdel-Samad Al-Gholam, Heba Moustafa Rasheed Hathout, Marwa Mohamed Safwat, Asmaa Saeed Essawy\",\"doi\":\"10.5115/acb.23.247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The antidepressant drug trazodone (TRZ) is commonly used for treating depression, anxiety, and insomnia, however, it causes cardiotoxicity, which is one of its limitations. The objective of this work was to investigate the impact of sage (<i>Salvia officinalis</i>) in rats against cardiotoxicity induced by TRZ and to investigate the mechanisms involved in its cardio-protective properties through autophagy and oxidative stress. Fifty male albino rats were split randomly into five experimental groups: control group, sage oil group (100 mg/kg), TRZ group (20 mg/kg), protective group, and curative group. Cardiac function biomarkers (aspartate aminotransferase [AST], creatine kinase-MB [CK-MB], and cardiac troponin T [cTnI]) were assessed in serum. Oxidative stress and inflammatory biomarkers in cardiac tissue (total antioxidant capacity, malondialdehyde, and tumor necrosis factor-α) were evaluated. Heart tissues were subjected to histological, immunohistochemical, and ultrastructural evaluations. DNA damage also evaluated. Significant rise in the levels of AST, CK-MB, and cTnI were observed with enhanced autophagy along with marked histopathological changes in the form of interrupted muscle fibers with wide interstitial spaces with areas of hemorrhage and extravasated blood and interstitial mononuclear cellular infiltration in TRZ group. DNA damage was also significantly increased in TRZ group. However, administration of sage in both protective and curative groups show marked improvement of the cardiac alterations. In conclusion, sage ameliorated the alterations in the heart induced by trazadone through modulation of autophagy and oxidative stress.</p>\",\"PeriodicalId\":7831,\"journal\":{\"name\":\"Anatomy & Cell Biology\",\"volume\":\" \",\"pages\":\"256-270\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184420/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomy & Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5115/acb.23.247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomy & Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5115/acb.23.247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Sage (Salvia officinalis) alleviates trazadone induced rat cardiotoxicity mediated via modulation of autophagy and oxidative stress.
The antidepressant drug trazodone (TRZ) is commonly used for treating depression, anxiety, and insomnia, however, it causes cardiotoxicity, which is one of its limitations. The objective of this work was to investigate the impact of sage (Salvia officinalis) in rats against cardiotoxicity induced by TRZ and to investigate the mechanisms involved in its cardio-protective properties through autophagy and oxidative stress. Fifty male albino rats were split randomly into five experimental groups: control group, sage oil group (100 mg/kg), TRZ group (20 mg/kg), protective group, and curative group. Cardiac function biomarkers (aspartate aminotransferase [AST], creatine kinase-MB [CK-MB], and cardiac troponin T [cTnI]) were assessed in serum. Oxidative stress and inflammatory biomarkers in cardiac tissue (total antioxidant capacity, malondialdehyde, and tumor necrosis factor-α) were evaluated. Heart tissues were subjected to histological, immunohistochemical, and ultrastructural evaluations. DNA damage also evaluated. Significant rise in the levels of AST, CK-MB, and cTnI were observed with enhanced autophagy along with marked histopathological changes in the form of interrupted muscle fibers with wide interstitial spaces with areas of hemorrhage and extravasated blood and interstitial mononuclear cellular infiltration in TRZ group. DNA damage was also significantly increased in TRZ group. However, administration of sage in both protective and curative groups show marked improvement of the cardiac alterations. In conclusion, sage ameliorated the alterations in the heart induced by trazadone through modulation of autophagy and oxidative stress.