N A Kruglova, D S Komkov, D V Mazurov, M V Shepelev
{"title":"RRE-Rev 模块不会影响 Cas9 和 Gag 蛋白在 NanoMEDIC 病毒样颗粒中的包装效率。","authors":"N A Kruglova, D S Komkov, D V Mazurov, M V Shepelev","doi":"10.1134/S0012496623700886","DOIUrl":null,"url":null,"abstract":"<p><p>Delivery of ribonucleoprotein complexes of Cas9 nuclease and guide RNA into target cells with virus-like particles (VLP) is one of the novel methods of genome editing and is suitable for gene therapy of human diseases in the future. The efficiency of genome editing with VLPs depends on the Cas9 packaging into VLPs, the process mediated by the viral Gag protein. To improve the packaging of Cas9 into NanoMEDIC VLPs, plasmid constructs for Cas9 and Gag expression were modified by adding the HIV Rev response element (RRE), which was expected to increase the nuclear export of RRE-containing transcripts into the cytosol via the Rev accessory protein, as described for a Vpr-Cas9-based VLP system. The Cas9 and Gag protein levels in cell lysates were found to increase upon cotransfection with either the Rev-expressing plasmid or the empty control plasmid. The effect was independent of the presence of RRE in the transcript. Moreover, AP21967-induced dimerization of FRB and FKBP12, but not plasmid modification with RRE and/or cotransfection with the Rev-expressing plasmid, was shown to play the major role in Cas9 packaging into NanoMEDIC VLPs. The data indicated that it is impractical to use the RRE-Rev module to enhance the packaging of Cas9 nuclease into VLPs.</p>","PeriodicalId":11351,"journal":{"name":"Doklady Biological Sciences","volume":" ","pages":"S45-S50"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The RRE-Rev Module Has No Effect on the Packaging Efficiency of Cas9 and Gag Proteins into NanoMEDIC Virus-like Particles.\",\"authors\":\"N A Kruglova, D S Komkov, D V Mazurov, M V Shepelev\",\"doi\":\"10.1134/S0012496623700886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Delivery of ribonucleoprotein complexes of Cas9 nuclease and guide RNA into target cells with virus-like particles (VLP) is one of the novel methods of genome editing and is suitable for gene therapy of human diseases in the future. The efficiency of genome editing with VLPs depends on the Cas9 packaging into VLPs, the process mediated by the viral Gag protein. To improve the packaging of Cas9 into NanoMEDIC VLPs, plasmid constructs for Cas9 and Gag expression were modified by adding the HIV Rev response element (RRE), which was expected to increase the nuclear export of RRE-containing transcripts into the cytosol via the Rev accessory protein, as described for a Vpr-Cas9-based VLP system. The Cas9 and Gag protein levels in cell lysates were found to increase upon cotransfection with either the Rev-expressing plasmid or the empty control plasmid. The effect was independent of the presence of RRE in the transcript. Moreover, AP21967-induced dimerization of FRB and FKBP12, but not plasmid modification with RRE and/or cotransfection with the Rev-expressing plasmid, was shown to play the major role in Cas9 packaging into NanoMEDIC VLPs. The data indicated that it is impractical to use the RRE-Rev module to enhance the packaging of Cas9 nuclease into VLPs.</p>\",\"PeriodicalId\":11351,\"journal\":{\"name\":\"Doklady Biological Sciences\",\"volume\":\" \",\"pages\":\"S45-S50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/S0012496623700886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/S0012496623700886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The RRE-Rev Module Has No Effect on the Packaging Efficiency of Cas9 and Gag Proteins into NanoMEDIC Virus-like Particles.
Delivery of ribonucleoprotein complexes of Cas9 nuclease and guide RNA into target cells with virus-like particles (VLP) is one of the novel methods of genome editing and is suitable for gene therapy of human diseases in the future. The efficiency of genome editing with VLPs depends on the Cas9 packaging into VLPs, the process mediated by the viral Gag protein. To improve the packaging of Cas9 into NanoMEDIC VLPs, plasmid constructs for Cas9 and Gag expression were modified by adding the HIV Rev response element (RRE), which was expected to increase the nuclear export of RRE-containing transcripts into the cytosol via the Rev accessory protein, as described for a Vpr-Cas9-based VLP system. The Cas9 and Gag protein levels in cell lysates were found to increase upon cotransfection with either the Rev-expressing plasmid or the empty control plasmid. The effect was independent of the presence of RRE in the transcript. Moreover, AP21967-induced dimerization of FRB and FKBP12, but not plasmid modification with RRE and/or cotransfection with the Rev-expressing plasmid, was shown to play the major role in Cas9 packaging into NanoMEDIC VLPs. The data indicated that it is impractical to use the RRE-Rev module to enhance the packaging of Cas9 nuclease into VLPs.
期刊介绍:
Doklady Biological Sciences is a journal that publishes new research in biological sciences of great significance. Initially the journal was a forum of the Russian Academy of Science and published only best contributions from Russia in the form of short articles. Now the journal welcomes submissions from any country in the English or Russian language. Every manuscript must be recommended by Russian or foreign members of the Russian Academy of Sciences.