Zachary T Steele, Karen Caceres, Austin D Jameson, Michael Griego, Elizabeth J Rogers, John P Whiteman
{"title":"从生物样本中蒸馏出动物体内的水,并通过空腔降环光谱法测量氧和氢稳定同位素的方案。","authors":"Zachary T Steele, Karen Caceres, Austin D Jameson, Michael Griego, Elizabeth J Rogers, John P Whiteman","doi":"10.1080/10256016.2024.2323201","DOIUrl":null,"url":null,"abstract":"<p><p>The application of stable isotope analysis (SIA) to the fields of ecology and animal biology has rapidly expanded over the past three decades, particularly with regards to water analysis. SIA now provides the opportunity to monitor migration patterns, examine food webs, and assess habitat changes in current and past study systems. While carbon and nitrogen SIA of biological samples have become common, analyses of oxygen or hydrogen are used more sparingly despite their promising utility for tracing water sources and animal metabolism. Common ecological applications of oxygen or hydrogen SIA require injecting enriched isotope tracers. As such, methods for processing and analyzing biological samples are tailored for enriched tracer techniques, which require lower precision than other techniques given the large signal-to-noise ratio of the data. However, instrumentation advancements are creating new opportunities to expand the applications of high-throughput oxygen and hydrogen SIA. To support these applications, we update methods to distill and measure water derived from biological samples with consistent precision equal to, or better than, ± 0.1 ‰ for <i>δ</i><sup>17</sup>O, ± 0.3 ‰ for <i>δ</i><sup>18</sup>O, ± 1 ‰ for <i>δ</i><sup>2</sup>H, ± 2 ‰ for <i>d</i>-excess, and ± 15 per meg for <i>Δ</i><sup>17</sup>O.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A protocol for distilling animal body water from biological samples and measuring oxygen and hydrogen stable isotopes via cavity ring-down spectroscopy.\",\"authors\":\"Zachary T Steele, Karen Caceres, Austin D Jameson, Michael Griego, Elizabeth J Rogers, John P Whiteman\",\"doi\":\"10.1080/10256016.2024.2323201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of stable isotope analysis (SIA) to the fields of ecology and animal biology has rapidly expanded over the past three decades, particularly with regards to water analysis. SIA now provides the opportunity to monitor migration patterns, examine food webs, and assess habitat changes in current and past study systems. While carbon and nitrogen SIA of biological samples have become common, analyses of oxygen or hydrogen are used more sparingly despite their promising utility for tracing water sources and animal metabolism. Common ecological applications of oxygen or hydrogen SIA require injecting enriched isotope tracers. As such, methods for processing and analyzing biological samples are tailored for enriched tracer techniques, which require lower precision than other techniques given the large signal-to-noise ratio of the data. However, instrumentation advancements are creating new opportunities to expand the applications of high-throughput oxygen and hydrogen SIA. To support these applications, we update methods to distill and measure water derived from biological samples with consistent precision equal to, or better than, ± 0.1 ‰ for <i>δ</i><sup>17</sup>O, ± 0.3 ‰ for <i>δ</i><sup>18</sup>O, ± 1 ‰ for <i>δ</i><sup>2</sup>H, ± 2 ‰ for <i>d</i>-excess, and ± 15 per meg for <i>Δ</i><sup>17</sup>O.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10256016.2024.2323201\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10256016.2024.2323201","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
过去三十年来,稳定同位素分析(SIA)在生态学和动物生物学领域的应用迅速扩大,尤其是在水分析方面。现在,SIA 为监测迁徙模式、检查食物网以及评估当前和过去研究系统中栖息地的变化提供了机会。生物样本中碳和氮的 SIA 分析已经非常普遍,而氧或氢的分析尽管在追踪水源和动物新陈代谢方面大有可为,但却很少使用。氧或氢 SIA 的常见生态应用需要注入富集同位素示踪剂。因此,处理和分析生物样本的方法是为富集示踪剂技术量身定制的,由于数据的信噪比较大,因此对精度的要求低于其他技术。然而,仪器的进步为扩大高通量氧和氢 SIA 的应用创造了新的机会。为了支持这些应用,我们更新了蒸馏和测量来自生物样本的水的方法,其精度始终等于或优于δ17O 的 ± 0.1 ‰、δ18O 的 ± 0.3 ‰、δ2H 的 ± 1 ‰、d-过量的 ± 2 ‰ 和 Δ17O 的 ± 15 per meg。
A protocol for distilling animal body water from biological samples and measuring oxygen and hydrogen stable isotopes via cavity ring-down spectroscopy.
The application of stable isotope analysis (SIA) to the fields of ecology and animal biology has rapidly expanded over the past three decades, particularly with regards to water analysis. SIA now provides the opportunity to monitor migration patterns, examine food webs, and assess habitat changes in current and past study systems. While carbon and nitrogen SIA of biological samples have become common, analyses of oxygen or hydrogen are used more sparingly despite their promising utility for tracing water sources and animal metabolism. Common ecological applications of oxygen or hydrogen SIA require injecting enriched isotope tracers. As such, methods for processing and analyzing biological samples are tailored for enriched tracer techniques, which require lower precision than other techniques given the large signal-to-noise ratio of the data. However, instrumentation advancements are creating new opportunities to expand the applications of high-throughput oxygen and hydrogen SIA. To support these applications, we update methods to distill and measure water derived from biological samples with consistent precision equal to, or better than, ± 0.1 ‰ for δ17O, ± 0.3 ‰ for δ18O, ± 1 ‰ for δ2H, ± 2 ‰ for d-excess, and ± 15 per meg for Δ17O.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.