利用可解释的机器学习降低单克隆抗体粘度。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-01-01 Epub Date: 2024-03-12 DOI:10.1080/19420862.2024.2303781
Emily K Makowski, Hsin-Ting Chen, Tiexin Wang, Lina Wu, Jie Huang, Marissa Mock, Patrick Underhill, Emma Pelegri-O'Day, Erick Maglalang, Dwight Winters, Peter M Tessier
{"title":"利用可解释的机器学习降低单克隆抗体粘度。","authors":"Emily K Makowski, Hsin-Ting Chen, Tiexin Wang, Lina Wu, Jie Huang, Marissa Mock, Patrick Underhill, Emma Pelegri-O'Day, Erick Maglalang, Dwight Winters, Peter M Tessier","doi":"10.1080/19420862.2024.2303781","DOIUrl":null,"url":null,"abstract":"<p><p>Early identification of antibody candidates with drug-like properties is essential for simplifying the development of safe and effective antibody therapeutics. For subcutaneous administration, it is important to identify candidates with low self-association to enable their formulation at high concentration while maintaining low viscosity, opalescence, and aggregation. Here, we report an interpretable machine learning model for predicting antibody (IgG1) variants with low viscosity using only the sequences of their variable (Fv) regions. Our model was trained on antibody viscosity data (>100 mg/mL mAb concentration) obtained at a common formulation pH (pH 5.2), and it identifies three key Fv features of antibodies linked to viscosity, namely their isoelectric points, hydrophobic patch sizes, and numbers of negatively charged patches. Of the three features, most predicted antibodies at risk for high viscosity, including antibodies with diverse antibody germlines in our study (79 mAbs) as well as clinical-stage IgG1s (94 mAbs), are those with low Fv isoelectric points (Fv pIs < 6.3). Our model identifies viscous antibodies with relatively high accuracy not only in our training and test sets, but also for previously reported data. Importantly, we show that the interpretable nature of the model enables the design of mutations that significantly reduce antibody viscosity, which we confirmed experimentally. We expect that this approach can be readily integrated into the drug development process to reduce the need for experimental viscosity screening and improve the identification of antibody candidates with drug-like properties.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939158/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reduction of monoclonal antibody viscosity using interpretable machine learning.\",\"authors\":\"Emily K Makowski, Hsin-Ting Chen, Tiexin Wang, Lina Wu, Jie Huang, Marissa Mock, Patrick Underhill, Emma Pelegri-O'Day, Erick Maglalang, Dwight Winters, Peter M Tessier\",\"doi\":\"10.1080/19420862.2024.2303781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early identification of antibody candidates with drug-like properties is essential for simplifying the development of safe and effective antibody therapeutics. For subcutaneous administration, it is important to identify candidates with low self-association to enable their formulation at high concentration while maintaining low viscosity, opalescence, and aggregation. Here, we report an interpretable machine learning model for predicting antibody (IgG1) variants with low viscosity using only the sequences of their variable (Fv) regions. Our model was trained on antibody viscosity data (>100 mg/mL mAb concentration) obtained at a common formulation pH (pH 5.2), and it identifies three key Fv features of antibodies linked to viscosity, namely their isoelectric points, hydrophobic patch sizes, and numbers of negatively charged patches. Of the three features, most predicted antibodies at risk for high viscosity, including antibodies with diverse antibody germlines in our study (79 mAbs) as well as clinical-stage IgG1s (94 mAbs), are those with low Fv isoelectric points (Fv pIs < 6.3). Our model identifies viscous antibodies with relatively high accuracy not only in our training and test sets, but also for previously reported data. Importantly, we show that the interpretable nature of the model enables the design of mutations that significantly reduce antibody viscosity, which we confirmed experimentally. We expect that this approach can be readily integrated into the drug development process to reduce the need for experimental viscosity screening and improve the identification of antibody candidates with drug-like properties.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2024.2303781\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2303781","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要简化安全有效的抗体疗法的开发过程,及早发现具有类药物特性的抗体候选物至关重要。对于皮下给药,重要的是识别低自结合的候选抗体,以便在保持低粘度、不透明和低聚集的同时实现高浓度制剂。在此,我们报告了一种可解释的机器学习模型,该模型仅使用抗体可变区(Fv)的序列来预测低粘度的抗体(IgG1)变体。我们的模型是在常见制剂 pH 值(pH 5.2)下获得的抗体粘度数据(>100 mg/mL mAb 浓度)上进行训练的,它识别出了与粘度相关的抗体的三个关键 Fv 特征,即等电点、疏水斑块大小和带负电荷斑块的数量。在这三个特征中,大多数预测有高粘度风险的抗体,包括在我们的研究中具有不同抗体种系的抗体(79 mAbs)以及临床阶段的 IgG1s(94 mAbs),都是那些 Fv 等电点较低(Fv pIs
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduction of monoclonal antibody viscosity using interpretable machine learning.

Early identification of antibody candidates with drug-like properties is essential for simplifying the development of safe and effective antibody therapeutics. For subcutaneous administration, it is important to identify candidates with low self-association to enable their formulation at high concentration while maintaining low viscosity, opalescence, and aggregation. Here, we report an interpretable machine learning model for predicting antibody (IgG1) variants with low viscosity using only the sequences of their variable (Fv) regions. Our model was trained on antibody viscosity data (>100 mg/mL mAb concentration) obtained at a common formulation pH (pH 5.2), and it identifies three key Fv features of antibodies linked to viscosity, namely their isoelectric points, hydrophobic patch sizes, and numbers of negatively charged patches. Of the three features, most predicted antibodies at risk for high viscosity, including antibodies with diverse antibody germlines in our study (79 mAbs) as well as clinical-stage IgG1s (94 mAbs), are those with low Fv isoelectric points (Fv pIs < 6.3). Our model identifies viscous antibodies with relatively high accuracy not only in our training and test sets, but also for previously reported data. Importantly, we show that the interpretable nature of the model enables the design of mutations that significantly reduce antibody viscosity, which we confirmed experimentally. We expect that this approach can be readily integrated into the drug development process to reduce the need for experimental viscosity screening and improve the identification of antibody candidates with drug-like properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1