跨基因组网络分析(TkNA):推断宿主-微生物群和其他多基因组相互作用因果关系的系统框架。

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Protocols Pub Date : 2024-03-12 DOI:10.1038/s41596-024-00960-w
Nolan K. Newman, Matthew S. Macovsky, Richard R. Rodrigues, Amanda M. Bruce, Jacob W. Pederson, Jyothi Padiadpu, Jigui Shan, Joshua Williams, Sankalp S. Patil, Amiran K. Dzutsev, Natalia Shulzhenko, Giorgio Trinchieri, Kevin Brown, Andrey Morgun
{"title":"跨基因组网络分析(TkNA):推断宿主-微生物群和其他多基因组相互作用因果关系的系统框架。","authors":"Nolan K. Newman, Matthew S. Macovsky, Richard R. Rodrigues, Amanda M. Bruce, Jacob W. Pederson, Jyothi Padiadpu, Jigui Shan, Joshua Williams, Sankalp S. Patil, Amiran K. Dzutsev, Natalia Shulzhenko, Giorgio Trinchieri, Kevin Brown, Andrey Morgun","doi":"10.1038/s41596-024-00960-w","DOIUrl":null,"url":null,"abstract":"We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host–microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network’s topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ . Transkingdom Network Analysis (TkNA) is a unique analytical framework for inferring causal factors underlying host–microbiota and other multi-omic interactions, by integrating data from multiple cohorts and diverse omics types.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions\",\"authors\":\"Nolan K. Newman, Matthew S. Macovsky, Richard R. Rodrigues, Amanda M. Bruce, Jacob W. Pederson, Jyothi Padiadpu, Jigui Shan, Joshua Williams, Sankalp S. Patil, Amiran K. Dzutsev, Natalia Shulzhenko, Giorgio Trinchieri, Kevin Brown, Andrey Morgun\",\"doi\":\"10.1038/s41596-024-00960-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host–microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network’s topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ . Transkingdom Network Analysis (TkNA) is a unique analytical framework for inferring causal factors underlying host–microbiota and other multi-omic interactions, by integrating data from multiple cohorts and diverse omics types.\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41596-024-00960-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41596-024-00960-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了跨基因组网络分析(TkNA),这是一种独特的因果推理分析框架,它通过整合来自多个队列和不同omics类型的数据,提供了生物系统的整体视图。TkNA 有助于破译特定条件或疾病中宿主-微生物群(或任何多组学数据)相互作用的关键参与者和机制。TkNA 重建了一个网络,该网络代表了一个统计模型,捕捉了生物系统中不同组学之间的复杂关系。它能识别多个队列中折叠变化方向和相关符号的稳健且可重现的模式,从而选择差异特征及其每组相关性。然后,该框架使用因果关系敏感指标、统计阈值和拓扑标准来确定形成跨智网络的最终边缘。有了后续网络的拓扑特征,TkNA 就能识别控制特定子网络或管理王国和/或子网络之间通信的节点。TkNA 重建网络所需的数百万相关性计算时间通常只需几分钟,具体时间因研究设计而异。与大多数只发现关联的其他多组学方法不同,TkNA 专注于建立因果关系,同时考虑多组学数据的复杂结构。要做到这一点,并不需要庞大的样本量。此外,TkNA 协议对用户非常友好,只需极少的安装和对 Unix 的基本熟悉。研究人员可通过 https://github.com/CAnBioNet/TkNA/ 访问 TkNA 软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions
We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host–microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network’s topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ . Transkingdom Network Analysis (TkNA) is a unique analytical framework for inferring causal factors underlying host–microbiota and other multi-omic interactions, by integrating data from multiple cohorts and diverse omics types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
期刊最新文献
How to isolate channel-forming membrane proteins using the E. coli expression system. High-confidence and high-throughput quantification of synapse engulfment by oligodendrocyte precursor cells. Multiplexed chromatin immunoprecipitation sequencing for quantitative study of histone modifications and chromatin factors. Plant sperm cell sequencing for genome phasing and determination of meiotic crossover points. Divergent synthesis of amino acid-linked O-GalNAc glycan core structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1