{"title":"通过生物物理诱导的基因组变异证明人畜共患病病原体的存在。","authors":"Daniah Alsufyani","doi":"10.1017/S0033583524000039","DOIUrl":null,"url":null,"abstract":"<p><p>Zoonoses are infectious agents that are transmissible between animals and humans. Up to 60% of known infectious diseases and 75% of emergent diseases are zoonotic. Genomic variation between homeostatic populations provides a novel window into the effect of environmental pathogens on allelic distributions within the populations. Genodynamics is a biophysical approach utilizing developed metrics on biallelic single-nucleotide polymorphisms (SNPs) that can be used to quantify the adaptive influences due to pathogens. A genomic free energy that is minimized when overall population health is optimized describes the influence of environmental agents upon genomic variation. A double-blind exploration of over 100 thousand SNPs searching for smooth functional dependencies upon four zoonotic pathogens carried by four possible hosts amidst populations that live in their ancestral environments has been conducted. Exemplars that infectious agents can have significant adaptive influence on human populations are presented. One discussed SNP is likely associated with both adaptive and innate immune regulation. The adaptive response of another SNP suggests an intriguing connection between zoonoses and human cancers. The adaptive forces of the presented pathogens upon the human genome have been quantified.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"57 ","pages":"e2"},"PeriodicalIF":7.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of zoonotic pathogens through biophysically induced genomic variance.\",\"authors\":\"Daniah Alsufyani\",\"doi\":\"10.1017/S0033583524000039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zoonoses are infectious agents that are transmissible between animals and humans. Up to 60% of known infectious diseases and 75% of emergent diseases are zoonotic. Genomic variation between homeostatic populations provides a novel window into the effect of environmental pathogens on allelic distributions within the populations. Genodynamics is a biophysical approach utilizing developed metrics on biallelic single-nucleotide polymorphisms (SNPs) that can be used to quantify the adaptive influences due to pathogens. A genomic free energy that is minimized when overall population health is optimized describes the influence of environmental agents upon genomic variation. A double-blind exploration of over 100 thousand SNPs searching for smooth functional dependencies upon four zoonotic pathogens carried by four possible hosts amidst populations that live in their ancestral environments has been conducted. Exemplars that infectious agents can have significant adaptive influence on human populations are presented. One discussed SNP is likely associated with both adaptive and innate immune regulation. The adaptive response of another SNP suggests an intriguing connection between zoonoses and human cancers. The adaptive forces of the presented pathogens upon the human genome have been quantified.</p>\",\"PeriodicalId\":20828,\"journal\":{\"name\":\"Quarterly Reviews of Biophysics\",\"volume\":\"57 \",\"pages\":\"e2\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Reviews of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S0033583524000039\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583524000039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
人畜共患病是指可在动物和人类之间传播的传染性病原体。多达 60% 的已知传染病和 75% 的新发疾病是人畜共患疾病。同源种群之间的基因组变异为了解环境病原体对种群内等位基因分布的影响提供了一个新的窗口。基因动力学是一种生物物理方法,利用已开发的双等位基因单核苷酸多态性(SNPs)指标,可用于量化病原体造成的适应性影响。基因组自由能描述了环境因素对基因组变异的影响。我们对超过 10 万个 SNPs 进行了双盲探索,以寻找在其祖先环境中生活的人群对四种可能宿主携带的四种人畜共患病病原体的平滑功能依赖性。结果表明,传染性病原体对人类种群的适应性有重大影响。其中讨论的一个 SNP 可能与适应性免疫调节和先天性免疫调节都有关。另一个 SNP 的适应性反应表明,人畜共患病与人类癌症之间存在着耐人寻味的联系。本文对病原体对人类基因组的适应力进行了量化。
Evidence of zoonotic pathogens through biophysically induced genomic variance.
Zoonoses are infectious agents that are transmissible between animals and humans. Up to 60% of known infectious diseases and 75% of emergent diseases are zoonotic. Genomic variation between homeostatic populations provides a novel window into the effect of environmental pathogens on allelic distributions within the populations. Genodynamics is a biophysical approach utilizing developed metrics on biallelic single-nucleotide polymorphisms (SNPs) that can be used to quantify the adaptive influences due to pathogens. A genomic free energy that is minimized when overall population health is optimized describes the influence of environmental agents upon genomic variation. A double-blind exploration of over 100 thousand SNPs searching for smooth functional dependencies upon four zoonotic pathogens carried by four possible hosts amidst populations that live in their ancestral environments has been conducted. Exemplars that infectious agents can have significant adaptive influence on human populations are presented. One discussed SNP is likely associated with both adaptive and innate immune regulation. The adaptive response of another SNP suggests an intriguing connection between zoonoses and human cancers. The adaptive forces of the presented pathogens upon the human genome have been quantified.
期刊介绍:
Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.