D Schwanke, S Schüle, S Stewart, O O Fatanmi, S Y Wise, C Hackenbroch, T Wiegel, V K Singh, M Port, M Abend, P Ostheim
{"title":"验证用于预测辐照猕猴外周血样本中 H-ARS 严重程度的四基因集","authors":"D Schwanke, S Schüle, S Stewart, O O Fatanmi, S Y Wise, C Hackenbroch, T Wiegel, V K Singh, M Port, M Abend, P Ostheim","doi":"10.1667/RADE-23-00162.1","DOIUrl":null,"url":null,"abstract":"<p><p>Increased radiological and nuclear threats require preparedness. Our earlier work identified a set of four genes (DDB2, FDXR, POU2AF1 and WNT3), which predicts severity of the hematological acute radiation syndrome (H-ARS) within the first three days postirradiation In this study of 41 Rhesus macaques (Macaca mulatta, 27 males, 14 females) irradiated with 5.8-7.2 Gy (LD29-50/60), including some treated with gamma-tocotrienol (GT3, a radiation countermeasure) we independently validated these genes as predictors in both sexes and examined them after three days. At the Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences, peripheral whole blood (1 ml) of Rhesus macaques was collected into PAXgene® Blood RNA tubes pre-irradiation after 1, 2, 3, 35 and 60 days postirradiation, stored at -80°C for internal experimental analyses. Leftover tubes from these already ongoing studies were kindly provided to Bundeswehr Institute of Radiobiology. RNA was isolated (QIAsymphony), converted into cDNA, and for further gene expression (GE) studies quantitative RT-PCR was performed. Differential gene expression (DGE) was measured relative to the pre-irradiation Rhesus macaques samples. Within the first three days postirradiation, we found similar results to human data: 1. FDXR and DDB2 were up-regulated, FDXR up to 3.5-fold, and DDB2 up to 13.5-fold in the median; 2. POU2AF1 appeared down regulated around tenfold in nearly all Rhesus macaques; 3. Contrary to human data, DDB2 was more up-regulated than FDXR, and the difference of the fold change (FC) ranged between 2.4 and 10, while the median fold changes of WNT3, except days 1 and 35, were close to 1. Nevertheless, 46% of the Rhesus macaques showed down-regulated WNT3 on day one postirradiation, which decreased to 12.2% on day 3 postirradiation. Considering the extended phase, there was a trend towards decreased fold changes at day 35, with median-fold changes ranging from 0.7 for DDB2 to 0.1 for POU2AF1, and on day 60 postirradiation, DGE in surviving animals was close to pre-exposure values for all four genes. In conclusion, the diagnostic significance for radiation-induced H-ARS severity prediction of FDXR, DDB2, and POU2AF1 was confirmed in this Rhesus macaques model. However, DDB2 showed higher GE values than FDXR. As shown in previous studies, the diagnostic significance of WNT3 could not be reproduced in Rhesus macaques; this could be due to the choice of animal model and methodological challenges.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"504-513"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validating a Four-gene Set for H-ARS Severity Prediction in Peripheral Blood Samples of Irradiated Rhesus Macaques.\",\"authors\":\"D Schwanke, S Schüle, S Stewart, O O Fatanmi, S Y Wise, C Hackenbroch, T Wiegel, V K Singh, M Port, M Abend, P Ostheim\",\"doi\":\"10.1667/RADE-23-00162.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increased radiological and nuclear threats require preparedness. Our earlier work identified a set of four genes (DDB2, FDXR, POU2AF1 and WNT3), which predicts severity of the hematological acute radiation syndrome (H-ARS) within the first three days postirradiation In this study of 41 Rhesus macaques (Macaca mulatta, 27 males, 14 females) irradiated with 5.8-7.2 Gy (LD29-50/60), including some treated with gamma-tocotrienol (GT3, a radiation countermeasure) we independently validated these genes as predictors in both sexes and examined them after three days. At the Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences, peripheral whole blood (1 ml) of Rhesus macaques was collected into PAXgene® Blood RNA tubes pre-irradiation after 1, 2, 3, 35 and 60 days postirradiation, stored at -80°C for internal experimental analyses. Leftover tubes from these already ongoing studies were kindly provided to Bundeswehr Institute of Radiobiology. RNA was isolated (QIAsymphony), converted into cDNA, and for further gene expression (GE) studies quantitative RT-PCR was performed. Differential gene expression (DGE) was measured relative to the pre-irradiation Rhesus macaques samples. Within the first three days postirradiation, we found similar results to human data: 1. FDXR and DDB2 were up-regulated, FDXR up to 3.5-fold, and DDB2 up to 13.5-fold in the median; 2. POU2AF1 appeared down regulated around tenfold in nearly all Rhesus macaques; 3. Contrary to human data, DDB2 was more up-regulated than FDXR, and the difference of the fold change (FC) ranged between 2.4 and 10, while the median fold changes of WNT3, except days 1 and 35, were close to 1. Nevertheless, 46% of the Rhesus macaques showed down-regulated WNT3 on day one postirradiation, which decreased to 12.2% on day 3 postirradiation. Considering the extended phase, there was a trend towards decreased fold changes at day 35, with median-fold changes ranging from 0.7 for DDB2 to 0.1 for POU2AF1, and on day 60 postirradiation, DGE in surviving animals was close to pre-exposure values for all four genes. In conclusion, the diagnostic significance for radiation-induced H-ARS severity prediction of FDXR, DDB2, and POU2AF1 was confirmed in this Rhesus macaques model. However, DDB2 showed higher GE values than FDXR. As shown in previous studies, the diagnostic significance of WNT3 could not be reproduced in Rhesus macaques; this could be due to the choice of animal model and methodological challenges.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":\" \",\"pages\":\"504-513\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-23-00162.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-23-00162.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Validating a Four-gene Set for H-ARS Severity Prediction in Peripheral Blood Samples of Irradiated Rhesus Macaques.
Increased radiological and nuclear threats require preparedness. Our earlier work identified a set of four genes (DDB2, FDXR, POU2AF1 and WNT3), which predicts severity of the hematological acute radiation syndrome (H-ARS) within the first three days postirradiation In this study of 41 Rhesus macaques (Macaca mulatta, 27 males, 14 females) irradiated with 5.8-7.2 Gy (LD29-50/60), including some treated with gamma-tocotrienol (GT3, a radiation countermeasure) we independently validated these genes as predictors in both sexes and examined them after three days. At the Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences, peripheral whole blood (1 ml) of Rhesus macaques was collected into PAXgene® Blood RNA tubes pre-irradiation after 1, 2, 3, 35 and 60 days postirradiation, stored at -80°C for internal experimental analyses. Leftover tubes from these already ongoing studies were kindly provided to Bundeswehr Institute of Radiobiology. RNA was isolated (QIAsymphony), converted into cDNA, and for further gene expression (GE) studies quantitative RT-PCR was performed. Differential gene expression (DGE) was measured relative to the pre-irradiation Rhesus macaques samples. Within the first three days postirradiation, we found similar results to human data: 1. FDXR and DDB2 were up-regulated, FDXR up to 3.5-fold, and DDB2 up to 13.5-fold in the median; 2. POU2AF1 appeared down regulated around tenfold in nearly all Rhesus macaques; 3. Contrary to human data, DDB2 was more up-regulated than FDXR, and the difference of the fold change (FC) ranged between 2.4 and 10, while the median fold changes of WNT3, except days 1 and 35, were close to 1. Nevertheless, 46% of the Rhesus macaques showed down-regulated WNT3 on day one postirradiation, which decreased to 12.2% on day 3 postirradiation. Considering the extended phase, there was a trend towards decreased fold changes at day 35, with median-fold changes ranging from 0.7 for DDB2 to 0.1 for POU2AF1, and on day 60 postirradiation, DGE in surviving animals was close to pre-exposure values for all four genes. In conclusion, the diagnostic significance for radiation-induced H-ARS severity prediction of FDXR, DDB2, and POU2AF1 was confirmed in this Rhesus macaques model. However, DDB2 showed higher GE values than FDXR. As shown in previous studies, the diagnostic significance of WNT3 could not be reproduced in Rhesus macaques; this could be due to the choice of animal model and methodological challenges.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.