小反刍兽疫病毒基因系的比较进化分析。

IF 5.5 2区 医学 Q1 VIROLOGY Virus Evolution Pub Date : 2024-03-06 eCollection Date: 2024-01-01 DOI:10.1093/ve/veae012
Maxime Courcelle, Habib Salami, Kadidia Tounkara, Modou Moustapha Lo, Aminata Ba, Mariame Diop, Mamadou Niang, Cheick Abou Kounta Sidibe, Amadou Sery, Marthin Dakouo, Lanceï Kaba, Youssouf Sidime, Mohamed Keyra, Alpha Oumar Sily Diallo, Ahmed Bezeid El Mamy, Ahmed Salem El Arbi, Yahya Barry, Ekaterina Isselmou, Habiboullah Habiboullah, Baba Doumbia, Mohamed Baba Gueya, Joseph Awuni, Theophilus Odoom, Patrick Tetteh Ababio, Daniel Nana Yaw TawiahYingar, Caroline Coste, Samia Guendouz, Olivier Kwiatek, Geneviève Libeau, Arnaud Bataille
{"title":"小反刍兽疫病毒基因系的比较进化分析。","authors":"Maxime Courcelle, Habib Salami, Kadidia Tounkara, Modou Moustapha Lo, Aminata Ba, Mariame Diop, Mamadou Niang, Cheick Abou Kounta Sidibe, Amadou Sery, Marthin Dakouo, Lanceï Kaba, Youssouf Sidime, Mohamed Keyra, Alpha Oumar Sily Diallo, Ahmed Bezeid El Mamy, Ahmed Salem El Arbi, Yahya Barry, Ekaterina Isselmou, Habiboullah Habiboullah, Baba Doumbia, Mohamed Baba Gueya, Joseph Awuni, Theophilus Odoom, Patrick Tetteh Ababio, Daniel Nana Yaw TawiahYingar, Caroline Coste, Samia Guendouz, Olivier Kwiatek, Geneviève Libeau, Arnaud Bataille","doi":"10.1093/ve/veae012","DOIUrl":null,"url":null,"abstract":"<p><p>Peste des petits ruminants virus (PPRV) causes a highly infectious disease affecting mainly goats and sheep in large parts of Africa, Asia, and the Middle East and has an important impact on the global economy and food security. Full genome sequencing of PPRV strains has proved to be critical to increasing our understanding of PPR epidemiology and to inform the ongoing global efforts for its eradication. However, the number of full PPRV genomes published is still limited and with a heavy bias towards recent samples and genetic Lineage IV (LIV), which is only one of the four existing PPRV lineages. Here, we generated genome sequences for twenty-five recent (2010-6) and seven historical (1972-99) PPRV samples, focusing mainly on Lineage II (LII) in West Africa. This provided the first opportunity to compare the evolutionary pressures and history between the globally dominant PPRV genetic LIV and LII, which is endemic in West Africa. Phylogenomic analysis showed that the relationship between PPRV LII strains was complex and supported the extensive transboundary circulation of the virus within West Africa. In contrast, LIV sequences were clearly separated per region, with strains from West and Central Africa branched as a sister clade to all other LIV sequences, suggesting that this lineage also has an African origin. Estimates of the time to the most recent common ancestor place the divergence of modern LII and LIV strains in the 1960s-80s, suggesting that this period was particularly important for the diversification and spread of PPRV globally. Phylogenetic relationships among historical samples from LI, LII, and LIII and with more recent samples point towards a high genetic diversity for all these lineages in Africa until the 1970s-80s and possible bottleneck events shaping PPRV's evolution during this period. Molecular evolution analyses show that strains belonging to LII and LIV have evolved under different selection pressures. Differences in codon usage and adaptative selection pressures were observed in all viral genes between the two lineages. Our results confirm that comparative genomic analyses can provide new insights into PPRV's evolutionary history and molecular epidemiology. However, PPRV genome sequencing efforts must be ramped up to increase the resolution of such studies for their use in the development of efficient PPR control and surveillance strategies.</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":"veae012"},"PeriodicalIF":5.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10930206/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative evolutionary analyses of peste des petits ruminants virus genetic lineages.\",\"authors\":\"Maxime Courcelle, Habib Salami, Kadidia Tounkara, Modou Moustapha Lo, Aminata Ba, Mariame Diop, Mamadou Niang, Cheick Abou Kounta Sidibe, Amadou Sery, Marthin Dakouo, Lanceï Kaba, Youssouf Sidime, Mohamed Keyra, Alpha Oumar Sily Diallo, Ahmed Bezeid El Mamy, Ahmed Salem El Arbi, Yahya Barry, Ekaterina Isselmou, Habiboullah Habiboullah, Baba Doumbia, Mohamed Baba Gueya, Joseph Awuni, Theophilus Odoom, Patrick Tetteh Ababio, Daniel Nana Yaw TawiahYingar, Caroline Coste, Samia Guendouz, Olivier Kwiatek, Geneviève Libeau, Arnaud Bataille\",\"doi\":\"10.1093/ve/veae012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peste des petits ruminants virus (PPRV) causes a highly infectious disease affecting mainly goats and sheep in large parts of Africa, Asia, and the Middle East and has an important impact on the global economy and food security. Full genome sequencing of PPRV strains has proved to be critical to increasing our understanding of PPR epidemiology and to inform the ongoing global efforts for its eradication. However, the number of full PPRV genomes published is still limited and with a heavy bias towards recent samples and genetic Lineage IV (LIV), which is only one of the four existing PPRV lineages. Here, we generated genome sequences for twenty-five recent (2010-6) and seven historical (1972-99) PPRV samples, focusing mainly on Lineage II (LII) in West Africa. This provided the first opportunity to compare the evolutionary pressures and history between the globally dominant PPRV genetic LIV and LII, which is endemic in West Africa. Phylogenomic analysis showed that the relationship between PPRV LII strains was complex and supported the extensive transboundary circulation of the virus within West Africa. In contrast, LIV sequences were clearly separated per region, with strains from West and Central Africa branched as a sister clade to all other LIV sequences, suggesting that this lineage also has an African origin. Estimates of the time to the most recent common ancestor place the divergence of modern LII and LIV strains in the 1960s-80s, suggesting that this period was particularly important for the diversification and spread of PPRV globally. Phylogenetic relationships among historical samples from LI, LII, and LIII and with more recent samples point towards a high genetic diversity for all these lineages in Africa until the 1970s-80s and possible bottleneck events shaping PPRV's evolution during this period. Molecular evolution analyses show that strains belonging to LII and LIV have evolved under different selection pressures. Differences in codon usage and adaptative selection pressures were observed in all viral genes between the two lineages. Our results confirm that comparative genomic analyses can provide new insights into PPRV's evolutionary history and molecular epidemiology. However, PPRV genome sequencing efforts must be ramped up to increase the resolution of such studies for their use in the development of efficient PPR control and surveillance strategies.</p>\",\"PeriodicalId\":56026,\"journal\":{\"name\":\"Virus Evolution\",\"volume\":\"10 1\",\"pages\":\"veae012\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10930206/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Evolution\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ve/veae012\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ve/veae012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小反刍兽疫病毒(PPRV)是一种高度传染性疾病,主要影响非洲、亚洲和中东大部分地区的山羊和绵羊,对全球经济和食品安全产生重要影响。事实证明,对 PPRV 株系进行全基因组测序对于加深我们对 PPR 流行病学的了解以及为当前全球根除该疾病的努力提供信息至关重要。然而,已发表的 PPRV 全基因组数量仍然有限,而且主要偏向于最近的样本和遗传系 IV(LIV),而遗传系 IV 只是现有的四个 PPRV 系之一。在此,我们生成了 25 个近期(2010-6 年)和 7 个历史(1972-99 年)PPRV 样本的基因组序列,主要侧重于西非的第二系(LII)。这为比较全球主要 PPRV 基因 LIV 与西非流行的 LII 之间的进化压力和历史提供了首次机会。系统发生组分析表明,PPRV LII 株系之间的关系非常复杂,支持了病毒在西非广泛的跨境循环。与此相反,LIV序列在每个地区都有明显的分离,其中西非和中非的毒株与所有其他LIV序列是姐妹支系,这表明该支系也起源于非洲。据估计,现代 LII 和 LIV 菌株的分化时间是在 20 世纪 60-80 年代,这表明这一时期对于 PPRV 的多样化和全球传播尤为重要。LI、LII 和 LIII 历史样本之间的系统发育关系以及与近期样本之间的系统发育关系表明,在 20 世纪 70-80 年代之前,非洲所有这些品系的遗传多样性都很高,在此期间可能发生了影响 PPRV 演化的瓶颈事件。分子进化分析表明,属于 LII 和 LIV 的菌株是在不同的选择压力下进化的。在两个品系的所有病毒基因中都观察到了密码子用法和适应性选择压力的差异。我们的研究结果证实,比较基因组分析可为了解 PPRV 的进化史和分子流行病学提供新的视角。然而,必须加大 PPRV 基因组测序工作的力度,提高此类研究的分辨率,以便用于制定有效的 PPR 控制和监测策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative evolutionary analyses of peste des petits ruminants virus genetic lineages.

Peste des petits ruminants virus (PPRV) causes a highly infectious disease affecting mainly goats and sheep in large parts of Africa, Asia, and the Middle East and has an important impact on the global economy and food security. Full genome sequencing of PPRV strains has proved to be critical to increasing our understanding of PPR epidemiology and to inform the ongoing global efforts for its eradication. However, the number of full PPRV genomes published is still limited and with a heavy bias towards recent samples and genetic Lineage IV (LIV), which is only one of the four existing PPRV lineages. Here, we generated genome sequences for twenty-five recent (2010-6) and seven historical (1972-99) PPRV samples, focusing mainly on Lineage II (LII) in West Africa. This provided the first opportunity to compare the evolutionary pressures and history between the globally dominant PPRV genetic LIV and LII, which is endemic in West Africa. Phylogenomic analysis showed that the relationship between PPRV LII strains was complex and supported the extensive transboundary circulation of the virus within West Africa. In contrast, LIV sequences were clearly separated per region, with strains from West and Central Africa branched as a sister clade to all other LIV sequences, suggesting that this lineage also has an African origin. Estimates of the time to the most recent common ancestor place the divergence of modern LII and LIV strains in the 1960s-80s, suggesting that this period was particularly important for the diversification and spread of PPRV globally. Phylogenetic relationships among historical samples from LI, LII, and LIII and with more recent samples point towards a high genetic diversity for all these lineages in Africa until the 1970s-80s and possible bottleneck events shaping PPRV's evolution during this period. Molecular evolution analyses show that strains belonging to LII and LIV have evolved under different selection pressures. Differences in codon usage and adaptative selection pressures were observed in all viral genes between the two lineages. Our results confirm that comparative genomic analyses can provide new insights into PPRV's evolutionary history and molecular epidemiology. However, PPRV genome sequencing efforts must be ramped up to increase the resolution of such studies for their use in the development of efficient PPR control and surveillance strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virus Evolution
Virus Evolution Immunology and Microbiology-Microbiology
CiteScore
10.50
自引率
5.70%
发文量
108
审稿时长
14 weeks
期刊介绍: Virus Evolution is a new Open Access journal focusing on the long-term evolution of viruses, viruses as a model system for studying evolutionary processes, viral molecular epidemiology and environmental virology. The aim of the journal is to provide a forum for original research papers, reviews, commentaries and a venue for in-depth discussion on the topics relevant to virus evolution.
期刊最新文献
Dimensionality reduction distills complex evolutionary relationships in seasonal influenza and SARS-CoV-2. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Community-level variability in Bronx COVID-19 hospitalizations associated with differing population immunity during the second year of the pandemic. A phylogenetics and variant calling pipeline to support SARS-CoV-2 genomic epidemiology in the UK. Genomic epidemiology reveals the variation and transmission properties of SARS-CoV-2 in a single-source community outbreak.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1