用于运动意象 BCI 的快速多变量经验模式分解的脑电图节律分离和时频分析。

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS Biological Cybernetics Pub Date : 2024-04-01 Epub Date: 2024-03-12 DOI:10.1007/s00422-024-00984-1
Yang Jiao, Qian Zheng, Dan Qiao, Xun Lang, Lei Xie, Yi Pan
{"title":"用于运动意象 BCI 的快速多变量经验模式分解的脑电图节律分离和时频分析。","authors":"Yang Jiao, Qian Zheng, Dan Qiao, Xun Lang, Lei Xie, Yi Pan","doi":"10.1007/s00422-024-00984-1","DOIUrl":null,"url":null,"abstract":"<p><p>Motor imagery electroencephalogram (EEG) is widely employed in brain-computer interface (BCI) systems. As a time-frequency analysis method for nonlinear and non-stationary signals, multivariate empirical mode decomposition (MEMD) and its noise-assisted version (NA-MEMD) has been widely used in the preprocessing step of BCI systems for separating EEG rhythms corresponding to specific brain activities. However, when applied to multichannel EEG signals, MEMD or NA-MEMD often demonstrate low robustness to noise and high computational complexity. To address these issues, we have explored the advantages of our recently proposed fast multivariate empirical mode decomposition (FMEMD) and its noise-assisted version (NA-FMEMD) for analyzing motor imagery data. We emphasize that FMEMD enables a more accurate estimation of EEG frequency information and exhibits a more noise-robust decomposition performance with improved computational efficiency. Comparative analysis with MEMD on simulation data and real-world EEG validates the above assertions. The joint average frequency measure is employed to automatically select intrinsic mode functions that correspond to specific frequency bands. Thus, FMEMD-based classification architecture is proposed. Using FMEMD as a preprocessing algorithm instead of MEMD can improve the classification accuracy by 2.3% on the BCI Competition IV dataset. On the Physiobank Motor/Mental Imagery dataset and BCI Competition IV Dataset 2a, FMEMD-based architecture also attained a comparable performance to complex algorithms. The results indicate that FMEMD proficiently extracts feature information from small benchmark datasets while mitigating dimensionality constraints resulting from computational complexity. Hence, FMEMD or NA-FMEMD can be a powerful time-frequency preprocessing method for BCI.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI.\",\"authors\":\"Yang Jiao, Qian Zheng, Dan Qiao, Xun Lang, Lei Xie, Yi Pan\",\"doi\":\"10.1007/s00422-024-00984-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motor imagery electroencephalogram (EEG) is widely employed in brain-computer interface (BCI) systems. As a time-frequency analysis method for nonlinear and non-stationary signals, multivariate empirical mode decomposition (MEMD) and its noise-assisted version (NA-MEMD) has been widely used in the preprocessing step of BCI systems for separating EEG rhythms corresponding to specific brain activities. However, when applied to multichannel EEG signals, MEMD or NA-MEMD often demonstrate low robustness to noise and high computational complexity. To address these issues, we have explored the advantages of our recently proposed fast multivariate empirical mode decomposition (FMEMD) and its noise-assisted version (NA-FMEMD) for analyzing motor imagery data. We emphasize that FMEMD enables a more accurate estimation of EEG frequency information and exhibits a more noise-robust decomposition performance with improved computational efficiency. Comparative analysis with MEMD on simulation data and real-world EEG validates the above assertions. The joint average frequency measure is employed to automatically select intrinsic mode functions that correspond to specific frequency bands. Thus, FMEMD-based classification architecture is proposed. Using FMEMD as a preprocessing algorithm instead of MEMD can improve the classification accuracy by 2.3% on the BCI Competition IV dataset. On the Physiobank Motor/Mental Imagery dataset and BCI Competition IV Dataset 2a, FMEMD-based architecture also attained a comparable performance to complex algorithms. The results indicate that FMEMD proficiently extracts feature information from small benchmark datasets while mitigating dimensionality constraints resulting from computational complexity. Hence, FMEMD or NA-FMEMD can be a powerful time-frequency preprocessing method for BCI.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-024-00984-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-024-00984-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

运动图像脑电图(EEG)被广泛应用于脑机接口(BCI)系统中。作为非线性和非稳态信号的时频分析方法,多变量经验模式分解(MEMD)及其噪声辅助版本(NA-MEMD)已被广泛应用于 BCI 系统的预处理步骤,用于分离与特定大脑活动相对应的 EEG 节律。然而,当应用于多通道脑电信号时,MEMD 或 NA-MEMD 往往表现出对噪声的鲁棒性低和计算复杂性高的问题。为了解决这些问题,我们探索了最近提出的快速多变量经验模式分解(FMEMD)及其噪声辅助版本(NA-FMEMD)在分析运动图像数据方面的优势。我们强调,FMEMD 能够更准确地估计脑电图频率信息,并在提高计算效率的同时表现出更强的抗噪分解性能。在模拟数据和真实脑电图上与 MEMD 的对比分析验证了上述论断。联合平均频率测量被用来自动选择与特定频段相对应的本征模态函数。因此,我们提出了基于 FMEMD 的分类架构。在 BCI Competition IV 数据集上,使用 FMEMD 代替 MEMD 作为预处理算法可将分类准确率提高 2.3%。在Physiobank运动/心理图像数据集和BCI Competition IV数据集2a上,基于FMEMD的架构也达到了与复杂算法相当的性能。这些结果表明,FMEMD 能够从小型基准数据集中熟练地提取特征信息,同时缓解计算复杂性带来的维度限制。因此,FMEMD 或 NA-FMEMD 可以成为用于 BCI 的强大时频预处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI.

Motor imagery electroencephalogram (EEG) is widely employed in brain-computer interface (BCI) systems. As a time-frequency analysis method for nonlinear and non-stationary signals, multivariate empirical mode decomposition (MEMD) and its noise-assisted version (NA-MEMD) has been widely used in the preprocessing step of BCI systems for separating EEG rhythms corresponding to specific brain activities. However, when applied to multichannel EEG signals, MEMD or NA-MEMD often demonstrate low robustness to noise and high computational complexity. To address these issues, we have explored the advantages of our recently proposed fast multivariate empirical mode decomposition (FMEMD) and its noise-assisted version (NA-FMEMD) for analyzing motor imagery data. We emphasize that FMEMD enables a more accurate estimation of EEG frequency information and exhibits a more noise-robust decomposition performance with improved computational efficiency. Comparative analysis with MEMD on simulation data and real-world EEG validates the above assertions. The joint average frequency measure is employed to automatically select intrinsic mode functions that correspond to specific frequency bands. Thus, FMEMD-based classification architecture is proposed. Using FMEMD as a preprocessing algorithm instead of MEMD can improve the classification accuracy by 2.3% on the BCI Competition IV dataset. On the Physiobank Motor/Mental Imagery dataset and BCI Competition IV Dataset 2a, FMEMD-based architecture also attained a comparable performance to complex algorithms. The results indicate that FMEMD proficiently extracts feature information from small benchmark datasets while mitigating dimensionality constraints resulting from computational complexity. Hence, FMEMD or NA-FMEMD can be a powerful time-frequency preprocessing method for BCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
期刊最新文献
Phase response curves and the role of coordinates. Neuroscientific insights about computer vision models: a concise review. Astrocyte-mediated neuronal irregularities and dynamics: the complexity of the tripartite synapse Can a Hebbian-like learning rule be avoiding the curse of dimensionality in sparse distributed data? Variational analysis of sensory feedback mechanisms in powerstroke-recovery systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1