与新热带社会黄蜂(Vespidae; Polistinae, Epiponini)相关的放线菌新菌株,具有天然产品发现的抗菌潜力。

FEMS microbes Pub Date : 2024-02-24 eCollection Date: 2024-01-01 DOI:10.1093/femsmc/xtae005
Laura Chavarría-Pizarro, Kattia Núñez-Montero, Mariela Gutiérrez-Araya, William Watson-Guido, William Rivera-Méndez, Javier Pizarro-Cerdá
{"title":"与新热带社会黄蜂(Vespidae; Polistinae, Epiponini)相关的放线菌新菌株,具有天然产品发现的抗菌潜力。","authors":"Laura Chavarría-Pizarro, Kattia Núñez-Montero, Mariela Gutiérrez-Araya, William Watson-Guido, William Rivera-Méndez, Javier Pizarro-Cerdá","doi":"10.1093/femsmc/xtae005","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance has been considered a public health threat. The World Health Organization has warned about the urgency of detecting new antibiotics from novel sources. Social insects could be crucial in the search for new antibiotic metabolites, as some of them survive in places that favor parasite development. Recent studies have shown the potential of social insects to produce antimicrobial metabolites (e.g. ants, bees, and termites). However, most groups of social wasps remain unstudied. Here, we explored whether Actinobacteria are associated with workers in the Neotropical Social Wasps (Epiponini) of Costa Rica and evaluated their putative inhibitory activity against other bacteria. Most isolated strains (67%) have antagonistic effects, mainly against <i>Bacillus thuringensis</i> and <i>Escherichia coli</i> ATCC 25992. Based on genome analysis, some inhibitory Actinobacteria showed biosynthetic gene clusters (BGCs) related to the production of antimicrobial molecules such as Selvamycin, Piericidin A1, and Nystatin. The Actinobacteria could be associated with social wasps to produce antimicrobial compounds. For these reasons, we speculate that Actinobacteria associated with social wasps could be a novel source of antimicrobial compounds, mainly against Gram-negative bacteria.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"5 ","pages":"xtae005"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929769/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel strains of Actinobacteria associated with neotropical social wasps (Vespidae; Polistinae, Epiponini) with antimicrobial potential for natural product discovery.\",\"authors\":\"Laura Chavarría-Pizarro, Kattia Núñez-Montero, Mariela Gutiérrez-Araya, William Watson-Guido, William Rivera-Méndez, Javier Pizarro-Cerdá\",\"doi\":\"10.1093/femsmc/xtae005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance has been considered a public health threat. The World Health Organization has warned about the urgency of detecting new antibiotics from novel sources. Social insects could be crucial in the search for new antibiotic metabolites, as some of them survive in places that favor parasite development. Recent studies have shown the potential of social insects to produce antimicrobial metabolites (e.g. ants, bees, and termites). However, most groups of social wasps remain unstudied. Here, we explored whether Actinobacteria are associated with workers in the Neotropical Social Wasps (Epiponini) of Costa Rica and evaluated their putative inhibitory activity against other bacteria. Most isolated strains (67%) have antagonistic effects, mainly against <i>Bacillus thuringensis</i> and <i>Escherichia coli</i> ATCC 25992. Based on genome analysis, some inhibitory Actinobacteria showed biosynthetic gene clusters (BGCs) related to the production of antimicrobial molecules such as Selvamycin, Piericidin A1, and Nystatin. The Actinobacteria could be associated with social wasps to produce antimicrobial compounds. For these reasons, we speculate that Actinobacteria associated with social wasps could be a novel source of antimicrobial compounds, mainly against Gram-negative bacteria.</p>\",\"PeriodicalId\":73024,\"journal\":{\"name\":\"FEMS microbes\",\"volume\":\"5 \",\"pages\":\"xtae005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929769/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsmc/xtae005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsmc/xtae005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性已被视为一种公共卫生威胁。世界卫生组织警告说,从新的来源检测新的抗生素迫在眉睫。社会昆虫可能是寻找新抗生素代谢物的关键,因为其中一些昆虫生存在有利于寄生虫发展的地方。最近的研究表明,社会性昆虫(如蚂蚁、蜜蜂和白蚁)具有产生抗菌代谢物的潜力。然而,大多数社会性黄蜂类群仍未得到研究。在这里,我们探讨了放线菌是否与哥斯达黎加新热带社会黄蜂(Epiponini)的工蜂有关,并评估了它们对其他细菌的潜在抑制活性。大多数分离菌株(67%)具有拮抗作用,主要是对苏云金芽孢杆菌和大肠杆菌 ATCC 25992。根据基因组分析,一些具有抑制作用的放线菌显示出与生产抗菌分子有关的生物合成基因簇(BGCs),如塞尔瓦霉素(Selvamycin)、Piericidin A1 和 Nystatin。放线菌可能与社会黄蜂有关,以生产抗菌化合物。因此,我们推测与社会黄蜂相关的放线菌可能是抗菌化合物的新来源,主要针对革兰氏阴性细菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel strains of Actinobacteria associated with neotropical social wasps (Vespidae; Polistinae, Epiponini) with antimicrobial potential for natural product discovery.

Antimicrobial resistance has been considered a public health threat. The World Health Organization has warned about the urgency of detecting new antibiotics from novel sources. Social insects could be crucial in the search for new antibiotic metabolites, as some of them survive in places that favor parasite development. Recent studies have shown the potential of social insects to produce antimicrobial metabolites (e.g. ants, bees, and termites). However, most groups of social wasps remain unstudied. Here, we explored whether Actinobacteria are associated with workers in the Neotropical Social Wasps (Epiponini) of Costa Rica and evaluated their putative inhibitory activity against other bacteria. Most isolated strains (67%) have antagonistic effects, mainly against Bacillus thuringensis and Escherichia coli ATCC 25992. Based on genome analysis, some inhibitory Actinobacteria showed biosynthetic gene clusters (BGCs) related to the production of antimicrobial molecules such as Selvamycin, Piericidin A1, and Nystatin. The Actinobacteria could be associated with social wasps to produce antimicrobial compounds. For these reasons, we speculate that Actinobacteria associated with social wasps could be a novel source of antimicrobial compounds, mainly against Gram-negative bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊最新文献
Evaluating the impact of redox potential on the growth capacity of anaerobic gut fungi. Contact with young children is a major risk factor for pneumococcal colonization in older adults. Trivalent immunization with metal-binding proteins confers protection against enterococci in a mouse infection model. Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in Enterococcus faecalis. Pandemic storytelling and student engagement: how students imagined pandemics before COVID-19 pandemic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1