改进的 LSTM 与 QoS 感知混合 AVO 算法,用于增强 D2D 通信中的资源分配

IF 2.3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC EURASIP Journal on Wireless Communications and Networking Pub Date : 2024-03-12 DOI:10.1186/s13638-024-02339-7
Shaik Ahmed Pasha, Noor Mohammed Vali Mohamad
{"title":"改进的 LSTM 与 QoS 感知混合 AVO 算法,用于增强 D2D 通信中的资源分配","authors":"Shaik Ahmed Pasha, Noor Mohammed Vali Mohamad","doi":"10.1186/s13638-024-02339-7","DOIUrl":null,"url":null,"abstract":"<p>In communication technologies, device-to-device (D2D) communication is essential for resource management and power control, which are major research concerns nowadays. D2D resource allocation involves dividing vital resources, such as time, power, and spectrum, among several devices. Each device can connect to other devices via one or more frequency channels. D2D communication shares the cellular user resources, while signal power transmission causes interference to the users who share the same channel. So, there is a need to control the power of the D2D device to prevent interference. For proper power control and optimization of multi-channel D2D communication, which is a challenging task, we proposed a deep learning approach incorporating a hybrid resource allocation framework. This framework aims to increase the sum rate of D2D user equipment (DUE) while considering quality of service (QoS) factors like limiting interference to cellular user equipment (CUE) and guaranteeing individual DUE rates above a certain threshold. The proposed resource allocation scheme combines two methods, namely a metaheuristic hybrid particle swarm Cauchy approach to African vulture optimization (HPSCAV) and a modified long short-term memory (MLSTM) based approach. The HPSCAV scheme helps to ensure that the QoS constraints are met, while the MLSTM-based approach is utilized for efficient resource allocation by optimizing the power and improving it with HPSCAV. Simulation results validate that the proposed model achieved better performance in various metrics such as system capacity, power consumption, spectral efficiency (SE), and energy efficiency (EE).</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"6 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified LSTM with QoS aware hybrid AVO algorithm to enhance resource allocation in D2D communication\",\"authors\":\"Shaik Ahmed Pasha, Noor Mohammed Vali Mohamad\",\"doi\":\"10.1186/s13638-024-02339-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In communication technologies, device-to-device (D2D) communication is essential for resource management and power control, which are major research concerns nowadays. D2D resource allocation involves dividing vital resources, such as time, power, and spectrum, among several devices. Each device can connect to other devices via one or more frequency channels. D2D communication shares the cellular user resources, while signal power transmission causes interference to the users who share the same channel. So, there is a need to control the power of the D2D device to prevent interference. For proper power control and optimization of multi-channel D2D communication, which is a challenging task, we proposed a deep learning approach incorporating a hybrid resource allocation framework. This framework aims to increase the sum rate of D2D user equipment (DUE) while considering quality of service (QoS) factors like limiting interference to cellular user equipment (CUE) and guaranteeing individual DUE rates above a certain threshold. The proposed resource allocation scheme combines two methods, namely a metaheuristic hybrid particle swarm Cauchy approach to African vulture optimization (HPSCAV) and a modified long short-term memory (MLSTM) based approach. The HPSCAV scheme helps to ensure that the QoS constraints are met, while the MLSTM-based approach is utilized for efficient resource allocation by optimizing the power and improving it with HPSCAV. Simulation results validate that the proposed model achieved better performance in various metrics such as system capacity, power consumption, spectral efficiency (SE), and energy efficiency (EE).</p>\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-024-02339-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02339-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在通信技术中,设备对设备(D2D)通信对于资源管理和功率控制至关重要,这也是当今研究的主要关注点。D2D 资源分配涉及在多个设备之间分配时间、功率和频谱等重要资源。每个设备可通过一个或多个频率信道与其他设备连接。D2D 通信共享蜂窝用户资源,而信号功率传输会对共享同一信道的用户造成干扰。因此,需要控制 D2D 设备的功率以防止干扰。为了对多信道 D2D 通信进行适当的功率控制和优化(这是一项具有挑战性的任务),我们提出了一种包含混合资源分配框架的深度学习方法。该框架旨在提高 D2D 用户设备(DUE)的总速率,同时考虑服务质量(QoS)因素,如限制对蜂窝用户设备(CUE)的干扰,并保证单个 DUE 的速率高于某个阈值。所提出的资源分配方案结合了两种方法,即非洲秃鹫优化的元启发式混合粒子群考奇方法(HPSCAV)和基于修正长短期记忆(MLSTM)的方法。HPSCAV 方案有助于确保满足 QoS 约束条件,而基于 MLSTM 的方法则通过优化功率和改进 HPSCAV 来实现高效的资源分配。仿真结果验证了所提出的模型在系统容量、功耗、频谱效率 (SE) 和能效 (EE) 等各种指标上都取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A modified LSTM with QoS aware hybrid AVO algorithm to enhance resource allocation in D2D communication

In communication technologies, device-to-device (D2D) communication is essential for resource management and power control, which are major research concerns nowadays. D2D resource allocation involves dividing vital resources, such as time, power, and spectrum, among several devices. Each device can connect to other devices via one or more frequency channels. D2D communication shares the cellular user resources, while signal power transmission causes interference to the users who share the same channel. So, there is a need to control the power of the D2D device to prevent interference. For proper power control and optimization of multi-channel D2D communication, which is a challenging task, we proposed a deep learning approach incorporating a hybrid resource allocation framework. This framework aims to increase the sum rate of D2D user equipment (DUE) while considering quality of service (QoS) factors like limiting interference to cellular user equipment (CUE) and guaranteeing individual DUE rates above a certain threshold. The proposed resource allocation scheme combines two methods, namely a metaheuristic hybrid particle swarm Cauchy approach to African vulture optimization (HPSCAV) and a modified long short-term memory (MLSTM) based approach. The HPSCAV scheme helps to ensure that the QoS constraints are met, while the MLSTM-based approach is utilized for efficient resource allocation by optimizing the power and improving it with HPSCAV. Simulation results validate that the proposed model achieved better performance in various metrics such as system capacity, power consumption, spectral efficiency (SE), and energy efficiency (EE).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
3.80%
发文量
109
审稿时长
8.0 months
期刊介绍: The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process. The journal is an Open Access journal since 2004.
期刊最新文献
Anti-jamming for cognitive radio networks with Stackelberg game-assisted DSSS approach A SAR analysis of hexagonal-shaped UWB antenna for healthcare applications Successive interference cancellation with multiple feedback in NOMA-enabled massive IoT network Performance analysis of shared relay CR-NOMA network based on SWIPT Computational offloading into UAV swarm networks: a systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1