评估建造湿地初始运行期间磷酸盐溶解微生物(PSM)的活性

IF 1.8 4区 环境科学与生态学 Q3 ECOLOGY Wetlands Pub Date : 2024-03-13 DOI:10.1007/s13157-024-01795-7
Sungryul Kim, Kyungik Gil
{"title":"评估建造湿地初始运行期间磷酸盐溶解微生物(PSM)的活性","authors":"Sungryul Kim, Kyungik Gil","doi":"10.1007/s13157-024-01795-7","DOIUrl":null,"url":null,"abstract":"<p>Constructed wetland is typically occupied on the urban area, which emulates the function of natural wetland. It is necessary to supply nutrients that vegetation can absorb for its growth thus sustaining the nature system where represents as vegetation. Phosphorus is one of the essential nutrients for the growth of vegetation, whereas in natural wetlands the amount of phosphorus available for the growth of vegetation is insufficient. In this study, Phosphate Solubilization Microbe (PSM) was used for changing the phosphate’s chemical structure in wetland by its metabolism. Therefore, if PSM is added in wetlands, it is expected that the phosphorus removal mechanism by vegetation can be microbially boosted by the PSM. The PSM activity was measured from the soil sampled in advance, and then the experiment was conducted by culturing PSM in string media, excluding vegetation in the wetland module, and varying the concentration of phosphorus and the numbers of media. It was found that the concentration of the available phosphorus was proportional to the number of media by showing the more than half of conversation ratio orthophosphate into the available phosphorus. This study was conducted for verifying hypothesis that PSM might be help to activate a wetland environment without vegetation and PSM can be very useful to environmentally activating a wetland at the beginning of its formation and establishment in nature or after the winter season when the environment of wetland is relatively dormant.</p>","PeriodicalId":23640,"journal":{"name":"Wetlands","volume":"23 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Phosphate Solubilization Microbe(PSM) Activity During Initial Operation of Constructed Wetland\",\"authors\":\"Sungryul Kim, Kyungik Gil\",\"doi\":\"10.1007/s13157-024-01795-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Constructed wetland is typically occupied on the urban area, which emulates the function of natural wetland. It is necessary to supply nutrients that vegetation can absorb for its growth thus sustaining the nature system where represents as vegetation. Phosphorus is one of the essential nutrients for the growth of vegetation, whereas in natural wetlands the amount of phosphorus available for the growth of vegetation is insufficient. In this study, Phosphate Solubilization Microbe (PSM) was used for changing the phosphate’s chemical structure in wetland by its metabolism. Therefore, if PSM is added in wetlands, it is expected that the phosphorus removal mechanism by vegetation can be microbially boosted by the PSM. The PSM activity was measured from the soil sampled in advance, and then the experiment was conducted by culturing PSM in string media, excluding vegetation in the wetland module, and varying the concentration of phosphorus and the numbers of media. It was found that the concentration of the available phosphorus was proportional to the number of media by showing the more than half of conversation ratio orthophosphate into the available phosphorus. This study was conducted for verifying hypothesis that PSM might be help to activate a wetland environment without vegetation and PSM can be very useful to environmentally activating a wetland at the beginning of its formation and establishment in nature or after the winter season when the environment of wetland is relatively dormant.</p>\",\"PeriodicalId\":23640,\"journal\":{\"name\":\"Wetlands\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wetlands\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s13157-024-01795-7\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wetlands","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s13157-024-01795-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工湿地通常位于城市地区,模仿自然湿地的功能。有必要为植被提供其生长所能吸收的养分,从而维持以植被为代表的自然系统。磷是植被生长所必需的养分之一,而在自然湿地中,植被生长所需的磷量不足。在这项研究中,磷酸盐溶解微生物(PSM)被用来通过新陈代谢改变湿地中磷酸盐的化学结构。因此,如果在湿地中加入 PSM,预计植被的除磷机制可在 PSM 的微生物作用下得到促进。事先对土壤取样测定了 PSM 的活性,然后在湿地模块中排除植被,通过改变磷的浓度和培养基的数量,在字符串培养基中培养 PSM 进行实验。结果发现,可利用磷的浓度与培养基数量成正比,正磷酸盐转化为可利用磷的对话比例超过一半。这项研究旨在验证一个假设,即 PSM 有助于激活没有植被的湿地环境,而且 PSM 对于在自然界中形成和建立湿地之初或冬季过后湿地环境处于相对休眠状态时激活湿地环境非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Phosphate Solubilization Microbe(PSM) Activity During Initial Operation of Constructed Wetland

Constructed wetland is typically occupied on the urban area, which emulates the function of natural wetland. It is necessary to supply nutrients that vegetation can absorb for its growth thus sustaining the nature system where represents as vegetation. Phosphorus is one of the essential nutrients for the growth of vegetation, whereas in natural wetlands the amount of phosphorus available for the growth of vegetation is insufficient. In this study, Phosphate Solubilization Microbe (PSM) was used for changing the phosphate’s chemical structure in wetland by its metabolism. Therefore, if PSM is added in wetlands, it is expected that the phosphorus removal mechanism by vegetation can be microbially boosted by the PSM. The PSM activity was measured from the soil sampled in advance, and then the experiment was conducted by culturing PSM in string media, excluding vegetation in the wetland module, and varying the concentration of phosphorus and the numbers of media. It was found that the concentration of the available phosphorus was proportional to the number of media by showing the more than half of conversation ratio orthophosphate into the available phosphorus. This study was conducted for verifying hypothesis that PSM might be help to activate a wetland environment without vegetation and PSM can be very useful to environmentally activating a wetland at the beginning of its formation and establishment in nature or after the winter season when the environment of wetland is relatively dormant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wetlands
Wetlands 环境科学-环境科学
CiteScore
4.00
自引率
10.00%
发文量
108
审稿时长
4.0 months
期刊介绍: Wetlands is an international journal concerned with all aspects of wetlands biology, ecology, hydrology, water chemistry, soil and sediment characteristics, management, and laws and regulations. The journal is published 6 times per year, with the goal of centralizing the publication of pioneering wetlands work that has otherwise been spread among a myriad of journals. Since wetlands research usually requires an interdisciplinary approach, the journal in not limited to specific disciplines but seeks manuscripts reporting research results from all relevant disciplines. Manuscripts focusing on management topics and regulatory considerations relevant to wetlands are also suitable. Submissions may be in the form of articles or short notes. Timely review articles will also be considered, but the subject and content should be discussed with the Editor-in-Chief (NDSU.wetlands.editor@ndsu.edu) prior to submission. All papers published in Wetlands are reviewed by two qualified peers, an Associate Editor, and the Editor-in-Chief prior to acceptance and publication. All papers must present new information, must be factual and original, and must not have been published elsewhere.
期刊最新文献
Factors Regulating the Potential for Freshwater Mineral Soil Wetlands to Function as Natural Climate Solutions. Drivers of Soil Carbon Variability in North America's Prairie Pothole Wetlands: A Review. Dynamic Change Characteristics of Wetlands in Hefei and their Driving Factors Along the Urban–Rural Gradient Which Natural Wetland Characteristics Could be Used in Creating Temporary Wetlands? Assessing Present and Future Potential Distributions of Sagittaria macrophylla Zucc. and Sagittaria latifolia Willd. in Mexico under Various Climate Models and Timeframes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1