通过时刻闭合保护分岔

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED SIAM Journal on Applied Dynamical Systems Pub Date : 2024-03-12 DOI:10.1137/23m158440x
Christian Kuehn, Jan Mölter
{"title":"通过时刻闭合保护分岔","authors":"Christian Kuehn, Jan Mölter","doi":"10.1137/23m158440x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 791-812, March 2024. <br/> Abstract.Moment systems arise in a wide range of contexts and applications, e.g., in network modeling of complex systems. Since moment systems consist of a high or even infinite number of coupled equations, an indispensable step in obtaining a low-dimensional representation that is amenable to further analysis is, in many cases, to select a moment closure. A moment closure consists of a set of approximations that express certain higher-order moments in terms of lower-order ones, so that applying those leads to a closed system of equations for only the lower-order moments. Closures are frequently found drawing on intuition and heuristics to come up with quantitatively good approximations. In contrast to that, we propose an alternative approach where we instead focus on closures giving rise to certain qualitative features, such as bifurcations. Importantly, this fundamental change of perspective provides one with the possibility of classifying moment closures rigorously in regard to these features. This makes the design and selection of closures more algorithmic, precise, and reliable. In this work, we carefully study the moment systems that arise in the mean-field descriptions of two widely known network dynamical systems, the SIS epidemic and the adaptive voter model. We derive conditions that any moment closure has to satisfy so that the corresponding closed systems exhibit the transcritical bifurcation that one expects in these systems coming from the stochastic particle model.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"67 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preserving Bifurcations through Moment Closures\",\"authors\":\"Christian Kuehn, Jan Mölter\",\"doi\":\"10.1137/23m158440x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 791-812, March 2024. <br/> Abstract.Moment systems arise in a wide range of contexts and applications, e.g., in network modeling of complex systems. Since moment systems consist of a high or even infinite number of coupled equations, an indispensable step in obtaining a low-dimensional representation that is amenable to further analysis is, in many cases, to select a moment closure. A moment closure consists of a set of approximations that express certain higher-order moments in terms of lower-order ones, so that applying those leads to a closed system of equations for only the lower-order moments. Closures are frequently found drawing on intuition and heuristics to come up with quantitatively good approximations. In contrast to that, we propose an alternative approach where we instead focus on closures giving rise to certain qualitative features, such as bifurcations. Importantly, this fundamental change of perspective provides one with the possibility of classifying moment closures rigorously in regard to these features. This makes the design and selection of closures more algorithmic, precise, and reliable. In this work, we carefully study the moment systems that arise in the mean-field descriptions of two widely known network dynamical systems, the SIS epidemic and the adaptive voter model. We derive conditions that any moment closure has to satisfy so that the corresponding closed systems exhibit the transcritical bifurcation that one expects in these systems coming from the stochastic particle model.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m158440x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m158440x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》第 23 卷第 1 期第 791-812 页,2024 年 3 月。 摘要.力矩系统出现在广泛的背景和应用中,例如复杂系统的网络建模。由于矩系统由大量甚至无限多的耦合方程组成,因此在很多情况下,要获得一个便于进一步分析的低维表示,必不可少的一步就是选择一个矩闭包。力矩闭包由一组近似值组成,这些近似值用低阶力矩来表示某些高阶力矩,因此应用这些近似值可以得到一个仅适用于低阶力矩的闭包方程组。闭包通常是通过直觉和启发式方法得出定量的良好近似值。与此相反,我们提出了另一种方法,即把重点放在产生某些定性特征(如分岔)的闭合上。重要的是,这种视角的根本性改变为我们提供了根据这些特征对矩闭合进行严格分类的可能性。这使得闭包的设计和选择更具算法性、精确性和可靠性。在这项工作中,我们仔细研究了在两个广为人知的网络动力系统--SIS 流行病和自适应选民模型--的均场描述中出现的矩系统。我们推导出了任何时刻闭合都必须满足的条件,从而使相应的闭合系统表现出人们所期望的来自随机粒子模型的跨临界分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preserving Bifurcations through Moment Closures
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 791-812, March 2024.
Abstract.Moment systems arise in a wide range of contexts and applications, e.g., in network modeling of complex systems. Since moment systems consist of a high or even infinite number of coupled equations, an indispensable step in obtaining a low-dimensional representation that is amenable to further analysis is, in many cases, to select a moment closure. A moment closure consists of a set of approximations that express certain higher-order moments in terms of lower-order ones, so that applying those leads to a closed system of equations for only the lower-order moments. Closures are frequently found drawing on intuition and heuristics to come up with quantitatively good approximations. In contrast to that, we propose an alternative approach where we instead focus on closures giving rise to certain qualitative features, such as bifurcations. Importantly, this fundamental change of perspective provides one with the possibility of classifying moment closures rigorously in regard to these features. This makes the design and selection of closures more algorithmic, precise, and reliable. In this work, we carefully study the moment systems that arise in the mean-field descriptions of two widely known network dynamical systems, the SIS epidemic and the adaptive voter model. We derive conditions that any moment closure has to satisfy so that the corresponding closed systems exhibit the transcritical bifurcation that one expects in these systems coming from the stochastic particle model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
期刊最新文献
Global Dynamics of Piecewise Smooth Systems with Switches Depending on Both Discrete Times and Status Reduction and Reconstruction of the Oscillator in 1:1:2 Resonance plus an Axially Symmetric Polynomial Perturbation Forward Attraction of Nonautonomous Dynamical Systems and Applications to Navier–Stokes Equations Hawkes Process Modelling for Chemical Reaction Networks in a Random Environment On the Convergence of Nonlinear Averaging Dynamics with Three-Body Interactions on Hypergraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1