相信你的来源:量化变分正则化方法的来源条件要素

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED IMA Journal of Applied Mathematics Pub Date : 2024-03-11 DOI:10.1093/imamat/hxae008
Martin Benning, Tatiana A Bubba, Luca Ratti, Danilo Riccio
{"title":"相信你的来源:量化变分正则化方法的来源条件要素","authors":"Martin Benning, Tatiana A Bubba, Luca Ratti, Danilo Riccio","doi":"10.1093/imamat/hxae008","DOIUrl":null,"url":null,"abstract":"Source conditions are a key tool in regularisation theory that are needed to derive error estimates and convergence rates for ill-posed inverse problems. In this paper, we provide a recipe to practically compute source condition elements as the solution of convex minimisation problems that can be solved with first-order algorithms. We demonstrate the validity of our approach by testing it on two inverse problem case studies in machine learning and image processing: sparse coefficient estimation of a polynomial via LASSO regression and recovering an image from a subset of the coefficients of its discrete Fourier transform. We further demonstrate that the proposed approach can easily be modified to solve the machine learning task of identifying the optimal sampling pattern in the Fourier domain for a given image and variational regularisation method, which has applications in the context of sparsity promoting reconstruction from magnetic resonance imaging data.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trust your source: quantifying source condition elements for variational regularisation methods\",\"authors\":\"Martin Benning, Tatiana A Bubba, Luca Ratti, Danilo Riccio\",\"doi\":\"10.1093/imamat/hxae008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Source conditions are a key tool in regularisation theory that are needed to derive error estimates and convergence rates for ill-posed inverse problems. In this paper, we provide a recipe to practically compute source condition elements as the solution of convex minimisation problems that can be solved with first-order algorithms. We demonstrate the validity of our approach by testing it on two inverse problem case studies in machine learning and image processing: sparse coefficient estimation of a polynomial via LASSO regression and recovering an image from a subset of the coefficients of its discrete Fourier transform. We further demonstrate that the proposed approach can easily be modified to solve the machine learning task of identifying the optimal sampling pattern in the Fourier domain for a given image and variational regularisation method, which has applications in the context of sparsity promoting reconstruction from magnetic resonance imaging data.\",\"PeriodicalId\":56297,\"journal\":{\"name\":\"IMA Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imamat/hxae008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxae008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

源条件是正则化理论中的一个关键工具,需要它来推导误差估计值和错构逆问题的收敛率。在本文中,我们提供了一种计算源条件元素的方法,作为凸最小化问题的解,可以用一阶算法求解。我们通过对机器学习和图像处理中的两个逆问题案例研究进行测试,证明了我们方法的有效性:通过 LASSO 回归对多项式进行稀疏系数估计,以及从离散傅里叶变换的系数子集恢复图像。我们进一步证明,所提出的方法可以很容易地进行修改,以解决为给定图像和变分正则化方法确定傅里叶域最佳采样模式的机器学习任务,这在促进磁共振成像数据稀疏性重建的背景下具有应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trust your source: quantifying source condition elements for variational regularisation methods
Source conditions are a key tool in regularisation theory that are needed to derive error estimates and convergence rates for ill-posed inverse problems. In this paper, we provide a recipe to practically compute source condition elements as the solution of convex minimisation problems that can be solved with first-order algorithms. We demonstrate the validity of our approach by testing it on two inverse problem case studies in machine learning and image processing: sparse coefficient estimation of a polynomial via LASSO regression and recovering an image from a subset of the coefficients of its discrete Fourier transform. We further demonstrate that the proposed approach can easily be modified to solve the machine learning task of identifying the optimal sampling pattern in the Fourier domain for a given image and variational regularisation method, which has applications in the context of sparsity promoting reconstruction from magnetic resonance imaging data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
32
审稿时长
24 months
期刊介绍: The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered. The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.
期刊最新文献
The impact of confinement on the deformation of an elastic particle under axisymmetric tube flow On the P-Irreducibility of Quintic Positive Polynomials An explicit Maclaurin series solution to non-autonomous and non-homogeneous evolution equation, Omega Calculus, and associated applications Stability analysis of viscous multi-layer shear flows with interfacial slip An iteration method to study nonlinear wave propagation for a non-Green elastic 1D bar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1