求助PDF
{"title":"指数非线性混合阶 Hénon-Hardy 型系统解的 Liouville 定理","authors":"Wei Dai, Shaolong Peng","doi":"10.1515/ans-2023-0109","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the Hénon-Hardy type systems with exponential nonlinearity on a half space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math> ${\\mathbb{R}}_{+}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0109_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>a</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>b</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> $\\begin{cases}{\\left(-{\\Delta}\\right)}^{\\frac{\\alpha }{2}}u\\left(x\\right)=\\vert x{\\vert }^{a}{u}^{{p}_{1}}\\left(x\\right){e}^{{q}_{1}v\\left(x\\right)}, x\\in {\\mathbb{R}}_{+}^{2},\\quad \\hfill \\\\ \\left(-{\\Delta}\\right)v\\left(x\\right)=\\vert x{\\vert }^{b}{u}^{{p}_{2}}\\left(x\\right){e}^{{q}_{2}v\\left(x\\right)}, x\\in {\\mathbb{R}}_{+}^{2},\\quad \\hfill \\end{cases}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0109_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> with Dirichlet boundary conditions, where 0 < <jats:italic>α</jats:italic> < 2 and <jats:italic>p</jats:italic> <jats:sub>1</jats:sub>, <jats:italic>p</jats:italic> <jats:sub>2</jats:sub>, <jats:italic>q</jats:italic> <jats:sub>1</jats:sub>, <jats:italic>q</jats:italic> <jats:sub>2</jats:sub> > 0. First, we derived the integral representation formula corresponding to the above system under the assumption <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>≥</m:mo> <m:mo>−</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:mfrac> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math> ${p}_{1}\\ge -\\frac{2a}{\\alpha }-1$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0109_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>. Then, we prove Liouville theorem for solutions to the above system via the method of scaling spheres.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"14 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville theorems of solutions to mixed order Hénon-Hardy type system with exponential nonlinearity\",\"authors\":\"Wei Dai, Shaolong Peng\",\"doi\":\"10.1515/ans-2023-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the Hénon-Hardy type systems with exponential nonlinearity on a half space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math> ${\\\\mathbb{R}}_{+}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0109_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mfenced close=\\\"\\\" open=\\\"{\\\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mrow> <m:mi>a</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\\\"0.17em\\\" /> <m:mspace width=\\\"0.17em\\\" /> <m:mspace width=\\\"0.17em\\\" /> <m:mspace width=\\\"0.17em\\\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mrow> <m:mi>b</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\\\"0.17em\\\" /> <m:mspace width=\\\"0.17em\\\" /> <m:mspace width=\\\"0.17em\\\" /> <m:mspace width=\\\"0.17em\\\" /> <m:mspace width=\\\"0.17em\\\" /> <m:mspace width=\\\"0.17em\\\" /> <m:mspace width=\\\"0.17em\\\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> $\\\\begin{cases}{\\\\left(-{\\\\Delta}\\\\right)}^{\\\\frac{\\\\alpha }{2}}u\\\\left(x\\\\right)=\\\\vert x{\\\\vert }^{a}{u}^{{p}_{1}}\\\\left(x\\\\right){e}^{{q}_{1}v\\\\left(x\\\\right)}, x\\\\in {\\\\mathbb{R}}_{+}^{2},\\\\quad \\\\hfill \\\\\\\\ \\\\left(-{\\\\Delta}\\\\right)v\\\\left(x\\\\right)=\\\\vert x{\\\\vert }^{b}{u}^{{p}_{2}}\\\\left(x\\\\right){e}^{{q}_{2}v\\\\left(x\\\\right)}, x\\\\in {\\\\mathbb{R}}_{+}^{2},\\\\quad \\\\hfill \\\\end{cases}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0109_ineq_002.png\\\" /> </jats:alternatives> </jats:inline-formula> with Dirichlet boundary conditions, where 0 < <jats:italic>α</jats:italic> < 2 and <jats:italic>p</jats:italic> <jats:sub>1</jats:sub>, <jats:italic>p</jats:italic> <jats:sub>2</jats:sub>, <jats:italic>q</jats:italic> <jats:sub>1</jats:sub>, <jats:italic>q</jats:italic> <jats:sub>2</jats:sub> > 0. First, we derived the integral representation formula corresponding to the above system under the assumption <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>≥</m:mo> <m:mo>−</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:mfrac> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math> ${p}_{1}\\\\ge -\\\\frac{2a}{\\\\alpha }-1$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0109_ineq_003.png\\\" /> </jats:alternatives> </jats:inline-formula>. Then, we prove Liouville theorem for solutions to the above system via the method of scaling spheres.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0109\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0109","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
本文关注的是半空间 R + 2 ${\mathbb{R}}_{+}^{2}$ 上具有指数非线性的 Hénon-Hardy 型系统: ( - Δ ) α 2 u ( x ) = | x | a u p 1 ( x ) e q 1 v ( x ) , x ∈ R + 2 , ( - Δ ) v ( x ) = | x | b u p 2 ( x ) e q 2 v ( x ) , x ∈ R + 2 、 $\begin{cases}{\left(-{\Delta}\right)}^{\frac{\alpha }{2}}u\left(x\right)=\vert x{\vert }^{a}{u}^{{p}_{1}}\left(x\right){e}^{{q}_{1}v\left(x\right)}, x\in {\mathbb{R}}_{+}^{2},\quad \hfill \left(-{\Delta}\right)v\left(x\right)=vert x{vert }^{b}{u}^{p}_{2}}\left(x\right){e}^{q}_{2}v\left(x\right)}、x\in {\mathbb{R}}_{+}^{2},\quad \hfill \end{cases}$ with Dirichlet boundary conditions, where 0 <;α < 2 和 p 1, p 2, q 1, q 2 > 0。首先,我们在假设 p 1 ≥ - 2 a α - 1 ${p}_{1}\ge -\frac{2a}{\alpha }-1$ 的条件下导出了与上述系统相对应的积分表示公式。然后,我们通过缩放球方法证明上述系统解的柳维尔定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville theorems of solutions to mixed order Hénon-Hardy type system with exponential nonlinearity
In this paper, we are concerned with the Hénon-Hardy type systems with exponential nonlinearity on a half space R + 2 ${\mathbb{R}}_{+}^{2}$ : ( − Δ ) α 2 u ( x ) = | x | a u p 1 ( x ) e q 1 v ( x ) , x ∈ R + 2 , ( − Δ ) v ( x ) = | x | b u p 2 ( x ) e q 2 v ( x ) , x ∈ R + 2 , $\begin{cases}{\left(-{\Delta}\right)}^{\frac{\alpha }{2}}u\left(x\right)=\vert x{\vert }^{a}{u}^{{p}_{1}}\left(x\right){e}^{{q}_{1}v\left(x\right)}, x\in {\mathbb{R}}_{+}^{2},\quad \hfill \\ \left(-{\Delta}\right)v\left(x\right)=\vert x{\vert }^{b}{u}^{{p}_{2}}\left(x\right){e}^{{q}_{2}v\left(x\right)}, x\in {\mathbb{R}}_{+}^{2},\quad \hfill \end{cases}$ with Dirichlet boundary conditions, where 0 < α < 2 and p 1 , p 2 , q 1 , q 2 > 0. First, we derived the integral representation formula corresponding to the above system under the assumption p 1 ≥ − 2 a α − 1 ${p}_{1}\ge -\frac{2a}{\alpha }-1$ . Then, we prove Liouville theorem for solutions to the above system via the method of scaling spheres.