Easy-Amanida:利用 Amanida 和 Webchem 对临床代谢组学的总体结果进行荟萃分析的 R Shiny 应用程序。

IF 5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Research Synthesis Methods Pub Date : 2024-03-13 DOI:10.1002/jrsm.1713
Maria Llambrich, Pau Satorra, Eudald Correig, Josep Gumà, Jesús Brezmes, Cristian Tebé, Raquel Cumeras
{"title":"Easy-Amanida:利用 Amanida 和 Webchem 对临床代谢组学的总体结果进行荟萃分析的 R Shiny 应用程序。","authors":"Maria Llambrich,&nbsp;Pau Satorra,&nbsp;Eudald Correig,&nbsp;Josep Gumà,&nbsp;Jesús Brezmes,&nbsp;Cristian Tebé,&nbsp;Raquel Cumeras","doi":"10.1002/jrsm.1713","DOIUrl":null,"url":null,"abstract":"<p>Meta-analysis is a useful tool in clinical research, as it combines the results of multiple clinical studies to improve precision when answering a particular scientific question. While there has been a substantial increase in publications using meta-analysis in various clinical research topics, the number of published meta-analyses in metabolomics is significantly lower compared to other omics disciplines. Metabolomics is the study of small chemical compounds in living organisms, which provides important insights into an organism's phenotype. However, the wide variety of compounds and the different experimental methods used in metabolomics make it challenging to perform a thorough meta-analysis. Additionally, there is a lack of consensus on reporting statistical estimates, and the high number of compound naming synonyms further complicates the process. Easy-Amanida is a new tool that combines two R packages, “amanida” and “webchem”, to enable meta-analysis of aggregate statistical data, like <i>p</i>-value and fold-change, while ensuring the compounds naming harmonization. The Easy-Amanida app is implemented in Shiny, an R package add-on for interactive web apps, and provides a workflow to optimize the naming combination. This article describes all the steps to perform the meta-analysis using Easy-Amanida, including an illustrative example for interpreting the results. The use of aggregate statistics metrics extends the use of Easy-Amanida beyond the metabolomics field.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 4","pages":"687-699"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1713","citationCount":"0","resultStr":"{\"title\":\"Easy-Amanida: An R Shiny application for the meta-analysis of aggregate results in clinical metabolomics using Amanida and Webchem\",\"authors\":\"Maria Llambrich,&nbsp;Pau Satorra,&nbsp;Eudald Correig,&nbsp;Josep Gumà,&nbsp;Jesús Brezmes,&nbsp;Cristian Tebé,&nbsp;Raquel Cumeras\",\"doi\":\"10.1002/jrsm.1713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Meta-analysis is a useful tool in clinical research, as it combines the results of multiple clinical studies to improve precision when answering a particular scientific question. While there has been a substantial increase in publications using meta-analysis in various clinical research topics, the number of published meta-analyses in metabolomics is significantly lower compared to other omics disciplines. Metabolomics is the study of small chemical compounds in living organisms, which provides important insights into an organism's phenotype. However, the wide variety of compounds and the different experimental methods used in metabolomics make it challenging to perform a thorough meta-analysis. Additionally, there is a lack of consensus on reporting statistical estimates, and the high number of compound naming synonyms further complicates the process. Easy-Amanida is a new tool that combines two R packages, “amanida” and “webchem”, to enable meta-analysis of aggregate statistical data, like <i>p</i>-value and fold-change, while ensuring the compounds naming harmonization. The Easy-Amanida app is implemented in Shiny, an R package add-on for interactive web apps, and provides a workflow to optimize the naming combination. This article describes all the steps to perform the meta-analysis using Easy-Amanida, including an illustrative example for interpreting the results. The use of aggregate statistics metrics extends the use of Easy-Amanida beyond the metabolomics field.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 4\",\"pages\":\"687-699\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1713\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1713\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1713","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在临床研究中,荟萃分析是一种有用的工具,因为它能将多项临床研究的结果结合起来,从而在回答特定科学问题时提高精确度。虽然在各种临床研究课题中使用荟萃分析的论文数量大幅增加,但与其他 omics 学科相比,代谢组学领域发表的荟萃分析论文数量明显较少。代谢组学研究生物体内的小分子化合物,为了解生物体的表型提供重要依据。然而,代谢组学中使用的化合物种类繁多,实验方法各不相同,因此要进行全面的荟萃分析具有挑战性。此外,在报告统计估计值方面也缺乏共识,而化合物命名同义词的大量存在又使这一过程变得更加复杂。Easy-Amanida 是一款新工具,它结合了两个 R 软件包 "amanida "和 "webchem",能够对 P 值和折叠变化等总体统计数据进行荟萃分析,同时确保化合物命名的统一。Easy-Amanida 应用程序是在 Shiny(一种用于交互式网络应用程序的 R 包插件)中实现的,并提供了优化命名组合的工作流程。本文介绍了使用 Easy-Amanida 进行荟萃分析的所有步骤,包括一个解释结果的示例。汇总统计指标的使用将 Easy-Amanida 的用途扩展到代谢组学领域之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Easy-Amanida: An R Shiny application for the meta-analysis of aggregate results in clinical metabolomics using Amanida and Webchem

Meta-analysis is a useful tool in clinical research, as it combines the results of multiple clinical studies to improve precision when answering a particular scientific question. While there has been a substantial increase in publications using meta-analysis in various clinical research topics, the number of published meta-analyses in metabolomics is significantly lower compared to other omics disciplines. Metabolomics is the study of small chemical compounds in living organisms, which provides important insights into an organism's phenotype. However, the wide variety of compounds and the different experimental methods used in metabolomics make it challenging to perform a thorough meta-analysis. Additionally, there is a lack of consensus on reporting statistical estimates, and the high number of compound naming synonyms further complicates the process. Easy-Amanida is a new tool that combines two R packages, “amanida” and “webchem”, to enable meta-analysis of aggregate statistical data, like p-value and fold-change, while ensuring the compounds naming harmonization. The Easy-Amanida app is implemented in Shiny, an R package add-on for interactive web apps, and provides a workflow to optimize the naming combination. This article describes all the steps to perform the meta-analysis using Easy-Amanida, including an illustrative example for interpreting the results. The use of aggregate statistics metrics extends the use of Easy-Amanida beyond the metabolomics field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research Synthesis Methods
Research Synthesis Methods MATHEMATICAL & COMPUTATIONAL BIOLOGYMULTID-MULTIDISCIPLINARY SCIENCES
CiteScore
16.90
自引率
3.10%
发文量
75
期刊介绍: Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines. Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines. By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.
期刊最新文献
Issue Information A tutorial on aggregating evidence from conceptual replication studies using the product Bayes factor Evolving use of the Cochrane Risk of Bias 2 tool in biomedical systematic reviews Exploring methodological approaches used in network meta-analysis of psychological interventions: A scoping review An evaluation of the performance of stopping rules in AI-aided screening for psychological meta-analytical research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1