用于肿瘤建模和药物筛选的前列腺癌组织块。

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-01-01 DOI:10.1007/978-1-0716-3730-2_10
Amani Yehya, Fatima Ghamlouche, Sana Hachem, Wassim Abou-Kheir
{"title":"用于肿瘤建模和药物筛选的前列腺癌组织块。","authors":"Amani Yehya, Fatima Ghamlouche, Sana Hachem, Wassim Abou-Kheir","doi":"10.1007/978-1-0716-3730-2_10","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is the second most common malignancy and the fifth leading cause of cancer death in men worldwide. Despite its prevalence, the highly heterogenic PCa has shown difficulty to establish representative cell lines that reflect the diverse phenotypes and different stages of the disease in vitro and hence hard to model in preclinical research. The patient-derived organoid (PDO) technique has emerged as a groundbreaking three-dimensional (3D) tumor modeling platform in cancer research. This versatile assay relies on the unique ability of cancer stem cells (CSCs) to self-organize and differentiate into organ-like mini structures. The PDO culture system allows for the long-term maintenance of cancer cells derived from patient tumor tissues. Moreover, it recapitulates the parental tumor features and serves as a superior preclinical model for in vitro tumor representation and personalized drug screening. Henceforth, PDOs hold great promise in precision medicine for cancer. Herein, we describe the detailed protocol to establish and propagate organoids derived from isolated cell suspensions of PCa patient tissues or cell lines using the 3D semisolid Matrigel™-based hanging-drop method. In addition, we highlight the relevance of PDOs as a tool for evaluating drug efficacy and predicting tumor response in PCa patients.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2777 ","pages":"135-144"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prostate Cancer Organoids for Tumor Modeling and Drug Screening.\",\"authors\":\"Amani Yehya, Fatima Ghamlouche, Sana Hachem, Wassim Abou-Kheir\",\"doi\":\"10.1007/978-1-0716-3730-2_10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer (PCa) is the second most common malignancy and the fifth leading cause of cancer death in men worldwide. Despite its prevalence, the highly heterogenic PCa has shown difficulty to establish representative cell lines that reflect the diverse phenotypes and different stages of the disease in vitro and hence hard to model in preclinical research. The patient-derived organoid (PDO) technique has emerged as a groundbreaking three-dimensional (3D) tumor modeling platform in cancer research. This versatile assay relies on the unique ability of cancer stem cells (CSCs) to self-organize and differentiate into organ-like mini structures. The PDO culture system allows for the long-term maintenance of cancer cells derived from patient tumor tissues. Moreover, it recapitulates the parental tumor features and serves as a superior preclinical model for in vitro tumor representation and personalized drug screening. Henceforth, PDOs hold great promise in precision medicine for cancer. Herein, we describe the detailed protocol to establish and propagate organoids derived from isolated cell suspensions of PCa patient tissues or cell lines using the 3D semisolid Matrigel™-based hanging-drop method. In addition, we highlight the relevance of PDOs as a tool for evaluating drug efficacy and predicting tumor response in PCa patients.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2777 \",\"pages\":\"135-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-3730-2_10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3730-2_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌(PCa)是全球第二大最常见的恶性肿瘤,也是导致男性癌症死亡的第五大原因。尽管前列腺癌发病率很高,但这种高度异源性的前列腺癌很难在体外建立能反映其不同表型和不同阶段的代表性细胞系,因此很难在临床前研究中建立模型。患者衍生类器官(PDO)技术已成为癌症研究中一种突破性的三维(3D)肿瘤建模平台。这种多功能检测方法依赖于癌症干细胞(CSCs)自我组织和分化成器官样微型结构的独特能力。PDO 培养系统可长期保持来自患者肿瘤组织的癌细胞。此外,它还能再现亲代肿瘤的特征,是体外肿瘤表征和个性化药物筛选的理想临床前模型。因此,PDOs 在癌症精准医疗方面大有可为。在此,我们介绍了使用基于三维半固体 Matrigel™ 的悬滴法建立和繁殖源自 PCa 患者组织或细胞系分离细胞悬液的器官组织的详细方案。此外,我们还强调了 PDOs 作为 PCa 患者药物疗效评估和肿瘤反应预测工具的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prostate Cancer Organoids for Tumor Modeling and Drug Screening.

Prostate cancer (PCa) is the second most common malignancy and the fifth leading cause of cancer death in men worldwide. Despite its prevalence, the highly heterogenic PCa has shown difficulty to establish representative cell lines that reflect the diverse phenotypes and different stages of the disease in vitro and hence hard to model in preclinical research. The patient-derived organoid (PDO) technique has emerged as a groundbreaking three-dimensional (3D) tumor modeling platform in cancer research. This versatile assay relies on the unique ability of cancer stem cells (CSCs) to self-organize and differentiate into organ-like mini structures. The PDO culture system allows for the long-term maintenance of cancer cells derived from patient tumor tissues. Moreover, it recapitulates the parental tumor features and serves as a superior preclinical model for in vitro tumor representation and personalized drug screening. Henceforth, PDOs hold great promise in precision medicine for cancer. Herein, we describe the detailed protocol to establish and propagate organoids derived from isolated cell suspensions of PCa patient tissues or cell lines using the 3D semisolid Matrigel™-based hanging-drop method. In addition, we highlight the relevance of PDOs as a tool for evaluating drug efficacy and predicting tumor response in PCa patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. A Guideline Strategy for Identifying Genes/Proteins Regulating Antiviral Innate Immunity. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Click Chemistry in Detecting Protein Modification. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1