膜生物反应器中 Anabaena sp. 对高有机物和含铬废水的植物修复能力。

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Science and Technology Pub Date : 2024-03-01 DOI:10.2166/wst.2024.061
Priyankari Bhattacharya, Subhadip Jana, Sathi Banerjee
{"title":"膜生物反应器中 Anabaena sp. 对高有机物和含铬废水的植物修复能力。","authors":"Priyankari Bhattacharya, Subhadip Jana, Sathi Banerjee","doi":"10.2166/wst.2024.061","DOIUrl":null,"url":null,"abstract":"<p><p>The efficiency of Anabaena sp. was analyzed for the phytoremediation of wastewater loaded with organic matter and heavy metals like chromium. Simulated wastewater was contaminated with chromium. A side-stream membrane bioreactor was used for the treatment of wastewater. A feed tank of 20 L capacity was used with a stirring arrangement. A ceramic microfiltration membrane composed of clay and alumina was obtained from Johnson & Johnson. The removal efficiency of chemical oxygen demand, biochemical oxygen demand, and chromium was evaluated. The process was used for algae harvesting and wastewater treatment. About 92% of chemical oxygen demand (COD), 98% chromium, and oil and grease were completely removed. Membrane fouling was explained by the pore blocking and cake resistance model. Stress in algal cells was determined from the superoxide dismutase (SOD) and catalase (CAT) analysis. The lipid content of algal cells was measured.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_061/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phytoremediation capability of Anabaena sp. for high organic and chromium-loaded wastewater in membrane bioreactors.\",\"authors\":\"Priyankari Bhattacharya, Subhadip Jana, Sathi Banerjee\",\"doi\":\"10.2166/wst.2024.061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The efficiency of Anabaena sp. was analyzed for the phytoremediation of wastewater loaded with organic matter and heavy metals like chromium. Simulated wastewater was contaminated with chromium. A side-stream membrane bioreactor was used for the treatment of wastewater. A feed tank of 20 L capacity was used with a stirring arrangement. A ceramic microfiltration membrane composed of clay and alumina was obtained from Johnson & Johnson. The removal efficiency of chemical oxygen demand, biochemical oxygen demand, and chromium was evaluated. The process was used for algae harvesting and wastewater treatment. About 92% of chemical oxygen demand (COD), 98% chromium, and oil and grease were completely removed. Membrane fouling was explained by the pore blocking and cake resistance model. Stress in algal cells was determined from the superoxide dismutase (SOD) and catalase (CAT) analysis. The lipid content of algal cells was measured.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_061/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.061\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.061","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

分析了 Anabaena sp.对含有有机物和重金属(如铬)的废水进行植物修复的效率。模拟废水受到铬污染。废水处理采用侧流膜生物反应器。进料槽容量为 20 升,配有搅拌装置。从强生公司获得了由粘土和氧化铝组成的陶瓷微滤膜。对化学需氧量、生化需氧量和铬的去除效率进行了评估。该工艺用于水藻采集和废水处理。约 92% 的化学需氧量 (COD)、98% 的铬和油脂被完全去除。膜堵塞由孔隙堵塞和滤饼阻力模型解释。通过超氧化物歧化酶(SOD)和过氧化氢酶(CAT)分析确定了藻细胞的应激反应。测量了藻细胞的脂质含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phytoremediation capability of Anabaena sp. for high organic and chromium-loaded wastewater in membrane bioreactors.

The efficiency of Anabaena sp. was analyzed for the phytoremediation of wastewater loaded with organic matter and heavy metals like chromium. Simulated wastewater was contaminated with chromium. A side-stream membrane bioreactor was used for the treatment of wastewater. A feed tank of 20 L capacity was used with a stirring arrangement. A ceramic microfiltration membrane composed of clay and alumina was obtained from Johnson & Johnson. The removal efficiency of chemical oxygen demand, biochemical oxygen demand, and chromium was evaluated. The process was used for algae harvesting and wastewater treatment. About 92% of chemical oxygen demand (COD), 98% chromium, and oil and grease were completely removed. Membrane fouling was explained by the pore blocking and cake resistance model. Stress in algal cells was determined from the superoxide dismutase (SOD) and catalase (CAT) analysis. The lipid content of algal cells was measured.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
期刊最新文献
Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. Spatial differences of dissolved organic matter composition and humification in an artificial lake. Wetland systems for water pollution control. Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar. Assessment of water quality in wells and springs across various districts of Taza City, Morocco.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1