{"title":"使用最优子树修剪和重植的中位四叉树搜索算法。","authors":"Shayesteh Arasti, Siavash Mirarab","doi":"10.1186/s13015-024-00257-3","DOIUrl":null,"url":null,"abstract":"<p><p>Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"19 1","pages":"12"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Median quartet tree search algorithms using optimal subtree prune and regraft.\",\"authors\":\"Shayesteh Arasti, Siavash Mirarab\",\"doi\":\"10.1186/s13015-024-00257-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.</p>\",\"PeriodicalId\":50823,\"journal\":{\"name\":\"Algorithms for Molecular Biology\",\"volume\":\"19 1\",\"pages\":\"12\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms for Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13015-024-00257-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-024-00257-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
由于生物过程和推断错误,基因树可能与物种树不同。获得物种树的一种方法是找到一棵与一组基因树相似度最大的树。潜在的物种树与基因树之间共享四分位点的数量提供了一个统计上合理的分数;如果正确地最大化,在几种不一致的统计模型下,它可以产生一个统计上一致的物种树估计值。然而,寻找中位四分树,即最大化该分数的树,是一个 NP-困难的问题,这也是现有几种启发式算法的动机。这些启发式算法并不遵循系统发生学中广泛使用的爬山模式。在本文中,我们的理论贡献使得高效的爬坡方法成为可能。具体来说,我们证明了大小为 m 的子树可以在与 n 有关的准线性时间内以最佳方式放置在大小为 n 的树上,并且(几乎)与 m 无关。这一结果使我们能够在爬山搜索中执行子树修剪和重植(SPR)重新排列。我们的研究表明,与 ASTRAL 等广泛使用的方法相比,这种方法能在优化得分方面略有提高,但不一定能提高准确性。
Median quartet tree search algorithms using optimal subtree prune and regraft.
Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.