使用最优子树修剪和重植的中位四叉树搜索算法。

IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Algorithms for Molecular Biology Pub Date : 2024-03-13 DOI:10.1186/s13015-024-00257-3
Shayesteh Arasti, Siavash Mirarab
{"title":"使用最优子树修剪和重植的中位四叉树搜索算法。","authors":"Shayesteh Arasti, Siavash Mirarab","doi":"10.1186/s13015-024-00257-3","DOIUrl":null,"url":null,"abstract":"<p><p>Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"19 1","pages":"12"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Median quartet tree search algorithms using optimal subtree prune and regraft.\",\"authors\":\"Shayesteh Arasti, Siavash Mirarab\",\"doi\":\"10.1186/s13015-024-00257-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.</p>\",\"PeriodicalId\":50823,\"journal\":{\"name\":\"Algorithms for Molecular Biology\",\"volume\":\"19 1\",\"pages\":\"12\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms for Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13015-024-00257-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-024-00257-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由于生物过程和推断错误,基因树可能与物种树不同。获得物种树的一种方法是找到一棵与一组基因树相似度最大的树。潜在的物种树与基因树之间共享四分位点的数量提供了一个统计上合理的分数;如果正确地最大化,在几种不一致的统计模型下,它可以产生一个统计上一致的物种树估计值。然而,寻找中位四分树,即最大化该分数的树,是一个 NP-困难的问题,这也是现有几种启发式算法的动机。这些启发式算法并不遵循系统发生学中广泛使用的爬山模式。在本文中,我们的理论贡献使得高效的爬坡方法成为可能。具体来说,我们证明了大小为 m 的子树可以在与 n 有关的准线性时间内以最佳方式放置在大小为 n 的树上,并且(几乎)与 m 无关。这一结果使我们能够在爬山搜索中执行子树修剪和重植(SPR)重新排列。我们的研究表明,与 ASTRAL 等广泛使用的方法相比,这种方法能在优化得分方面略有提高,但不一定能提高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Median quartet tree search algorithms using optimal subtree prune and regraft.

Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithms for Molecular Biology
Algorithms for Molecular Biology 生物-生化研究方法
CiteScore
2.40
自引率
10.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning. Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms. Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.
期刊最新文献
On the parameterized complexity of the median and closest problems under some permutation metrics. TINNiK: inference of the tree of blobs of a species network under the coalescent model. New generalized metric based on branch length distance to compare B cell lineage trees. Metric multidimensional scaling for large single-cell datasets using neural networks. Compression algorithm for colored de Bruijn graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1