Leonardo Y. Kamigauti, Gabriel M. P. Perez, Thomas C. M. Martin, Maria de Fatima Andrade and Prashant Kumar
{"title":"在数据有限的情况下,利用机器学习技术和低成本监测器加强空气污染的空间推断†。","authors":"Leonardo Y. Kamigauti, Gabriel M. P. Perez, Thomas C. M. Martin, Maria de Fatima Andrade and Prashant Kumar","doi":"10.1039/D3EA00126A","DOIUrl":null,"url":null,"abstract":"<p >Ensuring environmental justice necessitates equitable access to air quality data, particularly for vulnerable communities. However, traditional air quality data from reference monitors can be costly and challenging to interpret without in-depth knowledge of local meteorology. Low-cost monitors present an opportunity to enhance data availability in developing countries and enable the establishment of local monitoring networks. While machine learning models have shown promise in atmospheric dispersion modelling, many existing approaches rely on complementary data sources that are inaccessible in low-income areas, such as smartphone tracking and real-time traffic monitoring. This study addresses these limitations by introducing deep learning-based models for particulate matter dispersion at the neighbourhood scale. The models utilize data from low-cost monitors and widely available free datasets, delivering root mean square errors (RMSE) below 2.9 μg m<small><sup>−3</sup></small> for PM<small><sub>1</sub></small>, PM<small><sub>2.5</sub></small>, and PM<small><sub>10</sub></small>. The sensitivity analysis shows that the most important inputs to the models were the nearby monitors' PM concentrations, boundary layer dissipation and height, and precipitation variables. The models presented different sensitivities to each road type, and an RMSE below the regional differences, evidencing the learning of the spatial dependencies. This breakthrough paves the way for applications in various vulnerable localities, significantly improving air pollution data accessibility and contributing to environmental justice. Moreover, this work sets the stage for future research endeavours in refining the models and expanding data accessibility using alternative sources.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 342-350"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00126a?page=search","citationCount":"0","resultStr":"{\"title\":\"Enhancing spatial inference of air pollution using machine learning techniques with low-cost monitors in data-limited scenarios†\",\"authors\":\"Leonardo Y. Kamigauti, Gabriel M. P. Perez, Thomas C. M. Martin, Maria de Fatima Andrade and Prashant Kumar\",\"doi\":\"10.1039/D3EA00126A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ensuring environmental justice necessitates equitable access to air quality data, particularly for vulnerable communities. However, traditional air quality data from reference monitors can be costly and challenging to interpret without in-depth knowledge of local meteorology. Low-cost monitors present an opportunity to enhance data availability in developing countries and enable the establishment of local monitoring networks. While machine learning models have shown promise in atmospheric dispersion modelling, many existing approaches rely on complementary data sources that are inaccessible in low-income areas, such as smartphone tracking and real-time traffic monitoring. This study addresses these limitations by introducing deep learning-based models for particulate matter dispersion at the neighbourhood scale. The models utilize data from low-cost monitors and widely available free datasets, delivering root mean square errors (RMSE) below 2.9 μg m<small><sup>−3</sup></small> for PM<small><sub>1</sub></small>, PM<small><sub>2.5</sub></small>, and PM<small><sub>10</sub></small>. The sensitivity analysis shows that the most important inputs to the models were the nearby monitors' PM concentrations, boundary layer dissipation and height, and precipitation variables. The models presented different sensitivities to each road type, and an RMSE below the regional differences, evidencing the learning of the spatial dependencies. This breakthrough paves the way for applications in various vulnerable localities, significantly improving air pollution data accessibility and contributing to environmental justice. Moreover, this work sets the stage for future research endeavours in refining the models and expanding data accessibility using alternative sources.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 3\",\"pages\":\" 342-350\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00126a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d3ea00126a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d3ea00126a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Enhancing spatial inference of air pollution using machine learning techniques with low-cost monitors in data-limited scenarios†
Ensuring environmental justice necessitates equitable access to air quality data, particularly for vulnerable communities. However, traditional air quality data from reference monitors can be costly and challenging to interpret without in-depth knowledge of local meteorology. Low-cost monitors present an opportunity to enhance data availability in developing countries and enable the establishment of local monitoring networks. While machine learning models have shown promise in atmospheric dispersion modelling, many existing approaches rely on complementary data sources that are inaccessible in low-income areas, such as smartphone tracking and real-time traffic monitoring. This study addresses these limitations by introducing deep learning-based models for particulate matter dispersion at the neighbourhood scale. The models utilize data from low-cost monitors and widely available free datasets, delivering root mean square errors (RMSE) below 2.9 μg m−3 for PM1, PM2.5, and PM10. The sensitivity analysis shows that the most important inputs to the models were the nearby monitors' PM concentrations, boundary layer dissipation and height, and precipitation variables. The models presented different sensitivities to each road type, and an RMSE below the regional differences, evidencing the learning of the spatial dependencies. This breakthrough paves the way for applications in various vulnerable localities, significantly improving air pollution data accessibility and contributing to environmental justice. Moreover, this work sets the stage for future research endeavours in refining the models and expanding data accessibility using alternative sources.