使用流行的化学萃取法确定含铝和铁的土壤成分特征时可能存在的误区

IF 2.6 3区 农林科学 Q1 AGRONOMY Journal of Plant Nutrition and Soil Science Pub Date : 2024-03-13 DOI:10.1002/jpln.202300268
Thilo Rennert, Katharina R. Lenhardt
{"title":"使用流行的化学萃取法确定含铝和铁的土壤成分特征时可能存在的误区","authors":"Thilo Rennert, Katharina R. Lenhardt","doi":"10.1002/jpln.202300268","DOIUrl":null,"url":null,"abstract":"Wet‐chemical extraction of soil to quantify pedogenic species or to remove specific compounds prior to other analyses is an established approach in analytical soil mineralogy and soil chemistry. Interpretation and informational value of data derived from long‐established and frequently used extractions, for instance involving dithionite, oxalate/oxalic acid in the dark (AOD), and pyrophosphate (PYR), suffers from nonuniform practical regulation and missing knowledge about potential methodical limitations. In this review, we analyzed potential pitfalls of these frequently used extractions, with the focus on selectivity and completeness of the methods as derived from effects of time dependency and of phase separation. Major problems we identified comprised that time‐dependency of extraction differed between analytical targets, that a multitude of species is attacked, reducing the selectivity for the original analytical target, and that studies on extraction from model compounds, including analytical targets and nontargets, are not universally present. The latter aspect is crucial for the completeness of AOD and PYR extraction that has not been proven for all potential analytical targets of the methods yet. We practically tested citrate (CIT) extraction of aluminum (Al) and iron (Fe) in organic association, using selected models of soil constituents. Apart from a synthesized poorly ordered Si‐rich short‐range ordered aluminosilicate, CIT did not extract Al from nontarget phases, confirming previous studies, but did extract Al and Fe completely from organic associations. In addition to recommendations on the practical use of dithionite‐based, AOD, citrate‐ascorbate (CA), and CIT extraction, we suggest replacing highly problematic PYR extraction by CIT extraction for metals in organic association in soil and using AOD extraction in combination with CA and CIT extraction to avoid potential misinterpretation of ambiguous data.","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"23 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential pitfalls when using popular chemical extractions to characterize Al‐ and Fe‐containing soil constituents\",\"authors\":\"Thilo Rennert, Katharina R. Lenhardt\",\"doi\":\"10.1002/jpln.202300268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wet‐chemical extraction of soil to quantify pedogenic species or to remove specific compounds prior to other analyses is an established approach in analytical soil mineralogy and soil chemistry. Interpretation and informational value of data derived from long‐established and frequently used extractions, for instance involving dithionite, oxalate/oxalic acid in the dark (AOD), and pyrophosphate (PYR), suffers from nonuniform practical regulation and missing knowledge about potential methodical limitations. In this review, we analyzed potential pitfalls of these frequently used extractions, with the focus on selectivity and completeness of the methods as derived from effects of time dependency and of phase separation. Major problems we identified comprised that time‐dependency of extraction differed between analytical targets, that a multitude of species is attacked, reducing the selectivity for the original analytical target, and that studies on extraction from model compounds, including analytical targets and nontargets, are not universally present. The latter aspect is crucial for the completeness of AOD and PYR extraction that has not been proven for all potential analytical targets of the methods yet. We practically tested citrate (CIT) extraction of aluminum (Al) and iron (Fe) in organic association, using selected models of soil constituents. Apart from a synthesized poorly ordered Si‐rich short‐range ordered aluminosilicate, CIT did not extract Al from nontarget phases, confirming previous studies, but did extract Al and Fe completely from organic associations. In addition to recommendations on the practical use of dithionite‐based, AOD, citrate‐ascorbate (CA), and CIT extraction, we suggest replacing highly problematic PYR extraction by CIT extraction for metals in organic association in soil and using AOD extraction in combination with CA and CIT extraction to avoid potential misinterpretation of ambiguous data.\",\"PeriodicalId\":16802,\"journal\":{\"name\":\"Journal of Plant Nutrition and Soil Science\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Nutrition and Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/jpln.202300268\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Nutrition and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jpln.202300268","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

在分析土壤矿物学和土壤化学之前,对土壤进行湿化学萃取以量化成土物种或去除特定化合物是一种成熟的方法。长期以来,由于实际操作的不统一以及对潜在方法局限性的不了解,从长期使用的常用萃取方法(如连二亚硫酸钠法、草酸盐/草酸黑暗法(AOD)和焦磷酸盐法(PYR))中获得的数据的解释和信息价值受到了影响。在这篇综述中,我们分析了这些常用萃取方法的潜在缺陷,重点是根据时间依赖性和相分离的影响得出的方法的选择性和完整性。我们发现的主要问题包括:萃取的时间依赖性因分析目标的不同而不同;萃取的物质种类繁多,降低了对原始分析目标的选择性;从模型化合物(包括分析目标和非目标化合物)中萃取的研究并不普遍。后一方面对于 AOD 和 PYR 萃取的完整性至关重要,但目前还没有针对所有潜在分析目标的方法证明这一点。我们利用选定的土壤成分模型,实际测试了柠檬酸盐(CIT)对有机结合体中铝(Al)和铁(Fe)的萃取。除了合成的低有序富硅短程有序铝硅酸盐外,柠檬酸盐不能从非目标相中萃取铝,这与之前的研究结果相吻合,但却能从有机结合体中完全萃取铝和铁。除了对基于连二亚硫酸盐、AOD、柠檬酸盐-抗坏血酸盐(CA)和 CIT 萃取的实际使用提出建议外,我们还建议用 CIT 萃取来取代PYR 萃取,以处理土壤中有机结合体中的金属,并将 AOD 萃取与 CA 和 CIT 萃取结合使用,以避免对模糊数据的潜在误读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential pitfalls when using popular chemical extractions to characterize Al‐ and Fe‐containing soil constituents
Wet‐chemical extraction of soil to quantify pedogenic species or to remove specific compounds prior to other analyses is an established approach in analytical soil mineralogy and soil chemistry. Interpretation and informational value of data derived from long‐established and frequently used extractions, for instance involving dithionite, oxalate/oxalic acid in the dark (AOD), and pyrophosphate (PYR), suffers from nonuniform practical regulation and missing knowledge about potential methodical limitations. In this review, we analyzed potential pitfalls of these frequently used extractions, with the focus on selectivity and completeness of the methods as derived from effects of time dependency and of phase separation. Major problems we identified comprised that time‐dependency of extraction differed between analytical targets, that a multitude of species is attacked, reducing the selectivity for the original analytical target, and that studies on extraction from model compounds, including analytical targets and nontargets, are not universally present. The latter aspect is crucial for the completeness of AOD and PYR extraction that has not been proven for all potential analytical targets of the methods yet. We practically tested citrate (CIT) extraction of aluminum (Al) and iron (Fe) in organic association, using selected models of soil constituents. Apart from a synthesized poorly ordered Si‐rich short‐range ordered aluminosilicate, CIT did not extract Al from nontarget phases, confirming previous studies, but did extract Al and Fe completely from organic associations. In addition to recommendations on the practical use of dithionite‐based, AOD, citrate‐ascorbate (CA), and CIT extraction, we suggest replacing highly problematic PYR extraction by CIT extraction for metals in organic association in soil and using AOD extraction in combination with CA and CIT extraction to avoid potential misinterpretation of ambiguous data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
90
审稿时长
8-16 weeks
期刊介绍: Established in 1922, the Journal of Plant Nutrition and Soil Science (JPNSS) is an international peer-reviewed journal devoted to cover the entire spectrum of plant nutrition and soil science from different scale units, e.g. agroecosystem to natural systems. With its wide scope and focus on soil-plant interactions, JPNSS is one of the leading journals on this topic. Articles in JPNSS include reviews, high-standard original papers, and short communications and represent challenging research of international significance. The Journal of Plant Nutrition and Soil Science is one of the world’s oldest journals. You can trust in a peer-reviewed journal that has been established in the plant and soil science community for almost 100 years. Journal of Plant Nutrition and Soil Science (ISSN 1436-8730) is published in six volumes per year, by the German Societies of Plant Nutrition (DGP) and Soil Science (DBG). Furthermore, the Journal of Plant Nutrition and Soil Science (JPNSS) is a Cooperating Journal of the International Union of Soil Science (IUSS). The journal is produced by Wiley-VCH. Topical Divisions of the Journal of Plant Nutrition and Soil Science that are receiving increasing attention are: JPNSS – Topical Divisions Special timely focus in interdisciplinarity: - sustainability & critical zone science. Soil-Plant Interactions: - rhizosphere science & soil ecology - pollutant cycling & plant-soil protection - land use & climate change. Soil Science: - soil chemistry & soil physics - soil biology & biogeochemistry - soil genesis & mineralogy. Plant Nutrition: - plant nutritional physiology - nutrient dynamics & soil fertility - ecophysiological aspects of plant nutrition.
期刊最新文献
Cover Picture: J. Plant Nutr. Soil Sci. 1/2025 Editorial Board: J. Plant Nutr. Soil Sci. 1/2025 Impressum: J. Plant Nutr. Soil Sci. 1/2025 Contents: J. Plant Nutr. Soil Sci. 1/2025 Modulation Response of Biologically Synthesized ZnO Nanoparticles Using Mentha piperita L. on the Physio-Chemical Parameters of Pisum sativum L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1