Usman Abubakar Adamu , Noor Hana Hanif Abu Bakar , Anwar Iqbal , Nonni Soraya Sambudi , Zakariyya Uba Zango
{"title":"生物启发 ZnO 纳米粒子在改变 MIL101(Cr) 性能以实现菲的可见光降解中的作用","authors":"Usman Abubakar Adamu , Noor Hana Hanif Abu Bakar , Anwar Iqbal , Nonni Soraya Sambudi , Zakariyya Uba Zango","doi":"10.1016/j.catcom.2024.106905","DOIUrl":null,"url":null,"abstract":"<div><p>MIL-101(Cr) metal-organic frameworks and novel zinc oxide-MIL101(Cr) metal organic frameworks (ZnO-MIL101(Cr)) were prepared by hydrothermal technique at 160 °C and 220 °C for photodegradation of phenanthrene (PHE) in visible light. X-ray diffraction (XRD) analysis indicated a reduction in crystallite sizes of ZnO-MIL101(Cr) when compared to MIL101(Cr). However, incorporation of zinc oxide (ZnO) did not disrupt the MIL101(Cr) structure. ZnO-MIL101(Cr) exhibited high BET surface area (>1000 m<sup>2</sup>/g) when compared to MIL-101(Cr). These composites have lower bandgaps of ∼3.20 eV, than MIL-101(Cr) (3.5 eV). Optical studies reveal that incorporation of ZnO into MIL101(Cr) delays recombination of electron-hole pairs. These factors lead to ZnO-MIL101(Cr) having similar PHE degradation (98%), however within a shorter time when compared to MIL101(Cr). Catalysts followed the pseudo first-order kinetic model with ZnO-MIL101@220 °C having a rate constant of 2.83 × 10<sup>−2</sup> min<sup>−1</sup>. This is 2.3× and 1.1× higher than ZnO and the respective MIL101(Cr), correspondingly. Scavenging tests reveal that the hydroxyl radical (•OH) is the primary reactive species for PHE degradation. A degradation mechanism is proposed based on this finding.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106905"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000657/pdfft?md5=ba891f6415a427984416dbe9ebe19a98&pid=1-s2.0-S1566736724000657-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The role of bio-inspired ZnO nanoparticles in the modification of MIL101(Cr) properties for visible light degradation of phenanthrene\",\"authors\":\"Usman Abubakar Adamu , Noor Hana Hanif Abu Bakar , Anwar Iqbal , Nonni Soraya Sambudi , Zakariyya Uba Zango\",\"doi\":\"10.1016/j.catcom.2024.106905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MIL-101(Cr) metal-organic frameworks and novel zinc oxide-MIL101(Cr) metal organic frameworks (ZnO-MIL101(Cr)) were prepared by hydrothermal technique at 160 °C and 220 °C for photodegradation of phenanthrene (PHE) in visible light. X-ray diffraction (XRD) analysis indicated a reduction in crystallite sizes of ZnO-MIL101(Cr) when compared to MIL101(Cr). However, incorporation of zinc oxide (ZnO) did not disrupt the MIL101(Cr) structure. ZnO-MIL101(Cr) exhibited high BET surface area (>1000 m<sup>2</sup>/g) when compared to MIL-101(Cr). These composites have lower bandgaps of ∼3.20 eV, than MIL-101(Cr) (3.5 eV). Optical studies reveal that incorporation of ZnO into MIL101(Cr) delays recombination of electron-hole pairs. These factors lead to ZnO-MIL101(Cr) having similar PHE degradation (98%), however within a shorter time when compared to MIL101(Cr). Catalysts followed the pseudo first-order kinetic model with ZnO-MIL101@220 °C having a rate constant of 2.83 × 10<sup>−2</sup> min<sup>−1</sup>. This is 2.3× and 1.1× higher than ZnO and the respective MIL101(Cr), correspondingly. Scavenging tests reveal that the hydroxyl radical (•OH) is the primary reactive species for PHE degradation. A degradation mechanism is proposed based on this finding.</p></div>\",\"PeriodicalId\":263,\"journal\":{\"name\":\"Catalysis Communications\",\"volume\":\"187 \",\"pages\":\"Article 106905\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000657/pdfft?md5=ba891f6415a427984416dbe9ebe19a98&pid=1-s2.0-S1566736724000657-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000657\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000657","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The role of bio-inspired ZnO nanoparticles in the modification of MIL101(Cr) properties for visible light degradation of phenanthrene
MIL-101(Cr) metal-organic frameworks and novel zinc oxide-MIL101(Cr) metal organic frameworks (ZnO-MIL101(Cr)) were prepared by hydrothermal technique at 160 °C and 220 °C for photodegradation of phenanthrene (PHE) in visible light. X-ray diffraction (XRD) analysis indicated a reduction in crystallite sizes of ZnO-MIL101(Cr) when compared to MIL101(Cr). However, incorporation of zinc oxide (ZnO) did not disrupt the MIL101(Cr) structure. ZnO-MIL101(Cr) exhibited high BET surface area (>1000 m2/g) when compared to MIL-101(Cr). These composites have lower bandgaps of ∼3.20 eV, than MIL-101(Cr) (3.5 eV). Optical studies reveal that incorporation of ZnO into MIL101(Cr) delays recombination of electron-hole pairs. These factors lead to ZnO-MIL101(Cr) having similar PHE degradation (98%), however within a shorter time when compared to MIL101(Cr). Catalysts followed the pseudo first-order kinetic model with ZnO-MIL101@220 °C having a rate constant of 2.83 × 10−2 min−1. This is 2.3× and 1.1× higher than ZnO and the respective MIL101(Cr), correspondingly. Scavenging tests reveal that the hydroxyl radical (•OH) is the primary reactive species for PHE degradation. A degradation mechanism is proposed based on this finding.
期刊介绍:
Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.