Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche
{"title":"利用图卷积网络的深度潜位置模型进行聚类","authors":"Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche","doi":"10.1007/s11634-024-00583-9","DOIUrl":null,"url":null,"abstract":"<p>With the significant increase of interactions between individuals through numeric means, clustering of nodes in graphs has become a fundamental approach for analyzing large and complex networks. In this work, we propose the deep latent position model (DeepLPM), an end-to-end generative clustering approach which combines the widely used latent position model (LPM) for network analysis with a graph convolutional network encoding strategy. Moreover, an original estimation algorithm is introduced to integrate the explicit optimization of the posterior clustering probabilities via variational inference and the implicit optimization using stochastic gradient descent for graph reconstruction. Numerical experiments on simulated scenarios highlight the ability of DeepLPM to self-penalize the evidence lower bound for selecting the number of clusters, demonstrating its clustering capabilities compared to state-of-the-art methods. Finally, DeepLPM is further applied to an ecclesiastical network in Merovingian Gaul and to a citation network Cora to illustrate the practical interest in exploring large and complex real-world networks.</p>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"35 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering by deep latent position model with graph convolutional network\",\"authors\":\"Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche\",\"doi\":\"10.1007/s11634-024-00583-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the significant increase of interactions between individuals through numeric means, clustering of nodes in graphs has become a fundamental approach for analyzing large and complex networks. In this work, we propose the deep latent position model (DeepLPM), an end-to-end generative clustering approach which combines the widely used latent position model (LPM) for network analysis with a graph convolutional network encoding strategy. Moreover, an original estimation algorithm is introduced to integrate the explicit optimization of the posterior clustering probabilities via variational inference and the implicit optimization using stochastic gradient descent for graph reconstruction. Numerical experiments on simulated scenarios highlight the ability of DeepLPM to self-penalize the evidence lower bound for selecting the number of clusters, demonstrating its clustering capabilities compared to state-of-the-art methods. Finally, DeepLPM is further applied to an ecclesiastical network in Merovingian Gaul and to a citation network Cora to illustrate the practical interest in exploring large and complex real-world networks.</p>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11634-024-00583-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11634-024-00583-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Clustering by deep latent position model with graph convolutional network
With the significant increase of interactions between individuals through numeric means, clustering of nodes in graphs has become a fundamental approach for analyzing large and complex networks. In this work, we propose the deep latent position model (DeepLPM), an end-to-end generative clustering approach which combines the widely used latent position model (LPM) for network analysis with a graph convolutional network encoding strategy. Moreover, an original estimation algorithm is introduced to integrate the explicit optimization of the posterior clustering probabilities via variational inference and the implicit optimization using stochastic gradient descent for graph reconstruction. Numerical experiments on simulated scenarios highlight the ability of DeepLPM to self-penalize the evidence lower bound for selecting the number of clusters, demonstrating its clustering capabilities compared to state-of-the-art methods. Finally, DeepLPM is further applied to an ecclesiastical network in Merovingian Gaul and to a citation network Cora to illustrate the practical interest in exploring large and complex real-world networks.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.